Increasing Explorativity by Generation

Stephan Diehl, Andreas Kerren

University of Saarland, FR 6.2 Informatik
PO Box 15 11 50, D-66041 Saarbriicken
{diehl,kerren}@cs.uni-sb.de

Abstract. Visualization of computational models is at the heart of educational software for com-
puter science and related fields. In this paper we look at how generation of such visualizations and
the visualization of the generation process itself increase explorativity. Four approaches of increased
explorativity are introduced.

1 Introduction

Educational software mostly aims at width of knowledge (facts) and is not able to teach complex processes.
The majority of systems are intrinsic electronic books, encyclopaedias and dictionaries. Process-oriented
systems exist mostly for physics. In the area of computer science tutorials of programming languages
prevail. Particularly in computer science and compiler design the theory and algorithms are very abstract
and usually complex. Therefore visualizations are appropriate for computer science instruction. Although
compiler design is often considered a practical field within computer science, most of its techniques
are based on work in theoretical computer science, e.g. formal languages, automata theory and formal
semantics. In recent years we have developed several educational software systems for topics in compiler
design and theoretical computer science. These systems have in common that they teach computational
models by animating computations of instances of these models with example inputs. But they differ in
the level of explorativity.

lApproach HInput[Computational Model[Generator ‘
Static fixed |fixed none
Interactive user |fixed none
First-order generative |[user |user yes
Second-order generative|luser |user yes/visualized

Table 1. Levels of explorativity

Table 1 not only reflects the increased flexibility of the software developed, but also the chronological
development of software in our group. Higher levels of explorativity demand more prerequisites and self-
control by the learner. Thus, in the educational software the learner should start with static examples
and as the user advances the level of explorativity should be increased. Exercises and textual hints in the
educational software should guide the learner, to make sure he/she doesn’t miss the important issues.

2 Approaches

Static Approach In the static approach the execution of an instance of a computational model is animated
for a given, fixed input. The educational software ” Animation of Lexical Analysis” [Braune et al. 99] is
an example for this approach (http://www.cs.uni-sb.de/RW /anim/animcomp_e.html).

Interactive Approach In the interactive approach an instance of a computational model is animated for
an example entered by the user/learner. An example for this approach is our application ” Animation of
Semantical Analysis” [Kerren 99] (http://www.cs.uni-sb.de/RW /anim/animcomp_e.html).

First-Order Generative Approach In the first-order generative approach the user enters the specification of
an instance of a given computational model. Then an interactive visualization of this instance is generated
and the user can enter an example input as in the interactive approach. As an example of the first-order
generative approach we present GANIMAM [Diehl et al. 99], our web-based generator for interactive
animations of abstract machines (Fig. 1 and http://www.cs.uni-sb.de/RW /users/ganimal/GANIMAM/).

Proceedings of the AACE World Conference on Educational Multimedia,
Hypermedia and Telecommunications (EDMEDIA '00), Montreal, Kanada, 2000.
© AACE 2000

Andreas Kerren
Proceedings of the AACE World Conference on Educational Multimedia, Hypermedia and Telecommunications (EDMEDIA '00), Montreal, Kanada, 2000.
© AACE 2000

1 Main Application [MaMal [Running) | A ato B =] ES
File Ecit Optionz Wincdow Help Vahie Type PrettyFPrint T
Stacks | jHeapH [T Int SP

| & |Instwctions | <] # Fahe Type | *| Mame | Vabe | Type | =] | # Vahe | Type |[*
0z pshlos 1 05 A4 Pointer 1] i Pointey
11 eval g a2 Addvess 2] i | Paointey
10 e thasic 07 3 Int v 2 Int "6 |CLOSURE| Ohject |
11 13k i1 08 1 Int ep | @23 | Addvess
12 equal 0g s Pointer L zr Ny Pomter
13 jfalse L2] &40 Address -] 07 | VECTOR | Ohject
14 ikl 11 g Int |0 o Fointer ||
15 hyjmp L3 12 3 Int A BASIC | Ohbject |
16 |12 |poshloc] 13 a5 Pointer GAMIMAM 9 Int
17 pshlon 2 14 a5 Pointer BASIC | Ohjsct
12 psheloh 1 15 a5 Pointer @ Int
19 | fworec2 sle<| M| Pomte B0<| vECTOR | Gbiect _|
20 14114 1 17 | emalls |Undefined zmll= |Undefined -
21 rikelos 12 | =mll |Undefined mlls |Undefined def mlovec (mt n) = =
22 hojrap LS 19 | =mlls |Undefined smalls | Undafined S[EP-nrl]=
23 L4 |mark L& 20 | wmlls | Undefined amlls |UTndefined new VECTOR S[SP-nt1] .. S[EP]);
24 prashzloh 1 21 | cmlls |Undefined zmalle | Undefined SP:=iP-ntl;
25 rikvec 1 22 | eml | Undefined amlls |Undefined fed
26 l41L7 23 | emlle | Undefined amills | Undefined
27 rikelos 24 | amlls | Undefined amll= |Undefined
28 hymp LE 25 =mll= | Tndefined =mill= | Undefined
20 L7 |pusheloh 1 26 | emlle | Undefined 0 | eomlle | Undefined | 2]
30 vl -] 27 | =mlle |TUndefined = Ferhate Collecion
| itz | | Stop - | EOTURUE |
| i || eause [Freinis] '

1 B AUSE e il ¥
4

[[Onterzeichnet var: GANIMAM [[Urterzeichnet vor: GANIMAR

Fig. 1. Screenshot of an animated abstract machine

Second-Order Generative Approach As in the first-order generative approach the user enters a specifi-
cation of an instance of a given computational model. But in the second-order generative approach in
addition to visualizing the computation also the generation process is shown as an interactive visualiza-
tion. An example of this approach is our application GANIFA, a web-based generator for animated finite
automata (http://www.cs.uni-sb.de/RW /users/ganimal/GANIFA/).

3 Explorativity and Learner Control

In conventional educational software answers of an exercise are checked for correctness. Unfortunately
such correctness checking is not possible in most interesting cases. In computer science, many properties
of computational models can not be checked because of the halting problem. As a consequence we need
alternative ways to provide feedback for the learner.

In the generative approaches an interactive animation is produced from the response (specification)
of the learner. Then the learner can test it on the basis of own examples. In this way he/she can detect
errors. The generative approach offers a way for explorative, self-controlled learning. The learner can
focus on certain aspects in the generated, interactive animation and see what effects small modifications
in the specification have. With the help of such observations he/she formulates hypotheses and checks
these empirically. In the interactive approach such checkable hypotheses are restricted to the instance of
the computational model. In the first-order generative approach also hypotheses about the computational
model and in the second-order generative approach about the generation process itself can be checked.

References

[Braune et al. 99] B. Braune, S. Diehl, A. Kerren, R. Wilhelm. (1999). Animation of the Generation and Com-
putation of Finite Automata for Learning Software. To appear in Proceedings of Workshop of
Implementing Automata WIA’99, Potsdam, Germany.

[Diehl et al. 99] S. Diehl, T. Kunze. (1999). Visualizing Principles of Abstract Machines by Generating Inter-
active Animations. To appear in Future Generation Computing Systems, Elsevier.

[Kerren 99] A. Kerren. (1999). Animation of the Semantical Analysis. In Proceedings of ”8. GI-Fachtagung
Informatik und Schule INFOS99” (in German), Informatik aktuell, Springer, pp. 108-120.

