
DGCVis: An Exploratory 3D Visualization of Graph Pyramids

Andreas Kerren, Florian Breier, and Philip Kügler
Institute of Computer Graphics and Algorithms

Vienna University of Technology
Favoritenstraße 9-11, A-1040 Vienna, Austria

kerren@acm.org

Abstract

Hierarchies of plane graphs, called graph pyramids, are
used for collecting, storing and analyzing geographical in-
formation based on satellite images or other input data.
Important for the better understanding of the geographi-
cal data, like landscape properties or thematical maps, is
the appropriate visualization of graph pyramids and related
information. In this paper, we present an interactive visu-
alization tool that supports several coordinated views on
graph pyramids, subpyramids, thematical maps, etc. Fur-
thermore, some implementation details and application re-
sults are discussed.

1. Introduction

One important research area in Geography, especially
Landscape Ecology, is the automatical determination of
landscapes and their properties. Such properties can be very
complex and interdependent, for example warmth, humid-
ity, or growth of plants in a special area. Moreover, a land-
scape itself consists of several objects, like lakes or forests.
To determine the type of a landscape, we also need informa-
tion about the size, the shape, as well as some context data
of these landscape objects. So, a small forest with streets
within a congested urban area could be a recreation area
close to a town, whereas a bigger forest without any streets
in alpine scenery could be an interesting wildlife habitat.

In the project GEOGRAPH1, the automatical determina-
tion of primitive landscape elements and types is done by
segmentation on the basis of images (e.g. satellite images).
But conventional segmentation and classification methods,
well-known in the Pattern Recognition community (e.g.
[3, 11]), do not suffice to solve the problem of composed

1 This research has been supported by the Austrian Science Fund (FWF)
under grant number P14462.

landscape objects described above because of its hierarchi-
cal solution space. What we need is an additional second-
order segmentation, i.e., a meta-segmentation, to analyze
the input image. It is easy to see that we obtain a whole hi-
erarchy of segmentations with several levels if we continue
with segmentation from level to level. Here, graph-based
segmentation techniques use node and edge information
to perform this meta-segmentation: Each object (landscape
area) in a level can be regarded as node in a graph. Edges be-
tween nodes indicate the neighborhood relations within that
level. The result is a graph hierarchy, calledgraph pyramid
[10], which we can use as data structure for retrieving ge-
ographical information. Each level in a graph pyramid rep-
resents a kind of abstract map (land cover maps) of the in-
put image: Lower pyramid levels describe more concrete
maps and higher pyramid levels represent a higher level of
abstraction. In the following, we call these mapsthemati-
cal mapsdue to the possibility to generate them using addi-
tional geographical information.

The visualization of graph pyramids and the derived ge-
ographical information is part of the GEOGRAPH project
and topic of this paper that is organized as follows: In the
next Section 2, we shortly discuss some background infor-
mation about graph pyramids and motivate the importance
of visualization. Our visualization approach is presented in
Section 3, 4 and 5 including the description of used views
and implementation details. In Section 6, some application
examples of our tool are shown. Section 7 gives a conclu-
sion and outline of future work.

2. Graph Pyramids

Graph pyramids store hierarchies of graphs and the link-
age between consecutive graph levels. They can be gen-
erated from images or pre-segmented graphs in GML for-
mat [9] extended with additional information. In case of im-
ages, each node of the base level represents a pixel with a
specific RGB value. This is the node’s attribute. The edges
form a regular grid. In case of pre-segmented input graphs,

Andreas Kerren
Proceedings of the 2nd International Conference on Coordinated and Multiple Views in Exploratory Visualization, CMV 2004, London, UK, 2004.
© IEEE Computer Society Press 2004

kerren



the base level is built by the elements of the input graph.
Nodes and edges can be associated with attributes, for ex-
ample color, a path per node for the specification of the area
shape that is represented by the node, or in case of edges the
degree of border precision.

2.1. Dual Graph Contraction

The meta-segmentation process is performed by the Dual
Graph Contraction Library (DGClib). By contracting edges
within one level of the pyramid an algorithm, calledDual
Graph Contraction(DGC), computes the graph of the next
higher level. Edge contraction is a process of collapsing the
edgee = (u, v) and melting the nodesu andv, i.e. one node
(the surviver) remains and the other node is removed. The
surviver adopts the edges that were incident to the removed
node and its attributes are a combination of those fromu, v,
ande. This construction method yields geographical infor-
mation on different abstraction levels. DGC is specified by
disjointcontraction kernels(trees), each defining a possibly
empty set of non-surviving nodes and the surviver. The se-
lection of a contraction kernel depends on edge and node at-
tributes. They are described by so-calledcontraction rules
which are highly dependent on the application area. The
identification of meaningful contraction rules is part of the
GEOGRAPH project and ongoing research.

During a DGC run the nodes are combined to new nodes
in higher levels using the contraction rules, i.e., single pix-
els are identified as parts of bigger objects. If the input im-
age shows a mountain the algorithm finds all single objects
on it and places them as nodes in the pyramid (in best case).

More precisely, each level of the pyramid consists of a
pair of dual graphs. One graph is called point graph (the
graph discussed above) and the other is called face graph;
it describes the borders of the areas. Thus, the DGC algo-
rithm is divided into two phases: dual edge contraction and
dual face contraction. See the article of Kropatsch [10] for
further details on duality and DGC. In the rest of this pa-
per, we consider only point graphs.

The schematic diagram in Figure 1 shows a small graph
pyramid with three levels. Directed edges represent the con-
traction processes, white nodes are collapsed in the next up-
per level, and dotted edges between the levels symbolize to-
gether with the connected nodes all contraction kernels. The
visualization of these contraction kernels is an important is-
sue because they illustrate the core of the segmentation pro-
cess.

2.2. Why Visualization?

The answer to this question depends on the people who
ask it. From the geographer’s point of view, a visualization

Figure 1. A small graph pyramid based on a
5×5 pixel image (taken from [6]).

tool improves among other things the better understanding
of

• the contraction rule’s effects on the pyramid structure,

• the verification of the contraction rule set and defini-
tions,

• the correlation between pyramid levels and thematical
maps, and

• the role of node and edge attributes.

Interaction and an appropriate visualization of information
are important aspects. The visualization of the whole graph
pyramid is well suited for navigation. All needed informa-
tion is stored in this data structure and there is a clear and
logical connection between their components. For example,
the user can select a special pyramid level and the visual-
ization system opens a view with the represented themati-
cal map computed by a down projection to the base level,
see Section 3.4. So, the user can easily develop new con-
traction rules and verify them with the help of the visualiza-
tion. He/she can analyze the use and computation of con-
traction kernels level by level as well as the resulting the-
matical maps. Here, the system should display the correla-
tion between pixels/pixel areas in the thematical map and
the corresponding node in the distinguished level. There are
similar scenarios with respect to the other points summa-
rized in the list above.

Another group of users are researchers in Pattern Recog-
nition and Image Processing. For example, these people use



graph pyramids built by DGC for partitioning images [7]. A
visualization leads to the same advantages as decribed be-
fore, but additionally it supports studies about the structure
of a pyramid itself, like its node distributions or height in
relation of a specific input image. Thus, the researcher can
debug algorithms that perform the DGC process and ask
for statistical information (e.g. the node reduction factor).
Another point of interest are comparisons of two or more
(satellite) images by means of their graph pyramids.

3. Visualization Model and Views

Our visualization approach was implemented in Java [2]
and Java 3D [12, 15]. It supports currently four views (2D
and 3D) on the pyramid structure as well as related data.
The Graph Pyramid Viewcan be used for common navi-
gation purposes since graph pyramids are the central struc-
tures that store all information. Furthermore, our approach
supports the visualization of level graphs and subtrees spec-
ified by contraction kernels. Attributes and some statisti-
cal information are displayed within theAttribute Viewand
within theStatistics View, respectively. The Graph Pyramid
View and the Statistics View consist of several parts, i.e.,
closely related subviews in order to display different visu-
alization needs. The fourthThematical Map Viewis used to
show the thematical maps for a selected level. All views are
connected with an own event management system (see Sec-
tion 5) which assumes responsibility for a correct interac-
tion behaviour, e.g. a selection of a node in the Graph Pyra-
mid View leads to a selection of the same node in all sub-
views or to a focusing on the node’s attributes. We could
also load several images and represent four views for each
generated graph pyramid.

3.1. Graph Pyramid View

This central visualization presents three different sub-
views closely connected with each other. Note that the
screenshot examples discussed in the next sections only
show visualizations based on very small input data.

Pyramid SubviewThe Pyramid Subview gives the full view
of the data structure, i.e., each plane graph is drawn level by
level. The graph nodes are visualized by spheres while the
edges are thin cylinders, each connecting two spheres. Fig-
ure 2 shows the graph pyramid of a small two-colored im-
age. Light green lines which connect two graphs of different
hierarchies represent the contraction kernels. The color of
an image pixel is an important attribute, which exists for ev-
ery node. Therefore, the spheres get their colors from their
according color attributes which are either red or blue in our
example.

While Figure 2 only shows a small image, bigger im-
ages produce bigger graph pyramids with more visualiza-

Figure 2. The graph pyramid of a 3 ×3 pixel
image.

tion objects. Standard mouse-based navigation techniques,
like rotating, panning, or zooming, are supported. In prac-
tice, this visualization of a complete graph pyramid could be
too complex for users to get deeper information. Instead, a
visualization of separate levels of the graph pyramid is more
desirable, where each level can selectively be shown or hid-
den. This feature is also supported by our prototype imple-
mentation.

Problems arise in the way transparent objects are drawn
in Java 3D: If you carefully look at Figure 2, you can see
that some slightly transparent edges are painted in front of
contraction kernels. Actually, they should be behind them.
This is a known issue with Java 3D and the only way to
completely avoid it is to not use transparent objects at all.
However, this is not really a huge problem because it does
not catch the user’s eye.

Level SubviewThis part of the Graph Pyramid View shows
the actual selected level also as 3D visualization. There are
the same navigation facilities as in the Pyramid Subview.
From the user’s point of view, the visual comparison be-
tween the level graph and the thematical map visualization
(see below) is very important. Thus, he/she can see the map-
ping of the graph nodes and the appropriate image region of
the thematical map. It is possible to completely hide this
view.



Figure 3. Pyramid (I), Level (II), and Subtree (III) Subviews.

Figure 4. Attribute View (window on the right) with two selected nodes.



Subtree SubviewAfter selecting a node in the Pyramid Sub-
view, the connected subtree is computed and placed in this
view. The subtree computation starts with the selected node
and is linked via contraction kernels to the lower levels.
These connections are traced and the resulting tree is copied
into a new pyramid. In this way, the presentation of the
whole data structure is reduced to the level, subtree, and
node of interest. It is also possible to completely hide this
view.

Figure 3 shows all three subviews of the Graph Pyra-
mid View. The black arrow in the Pyramid Subview sym-
bolizes a specific node selection at the third pyramid level.
At this moment, the selected node’s subtree is computed
by the DGClib. The subtree is highlighted in the Pyramid
Subview and additionally displayed in the Subtree Subview.
The third level is shown in the Level Subview.

In future versions of our application, using this view
could be one way to create contractions from the view to
define new contraction rules. By selecting some nodes, the
visualization tool can compare their attributes and then cre-
ate some contraction rules providing a contraction of the se-
lected nodes for the user. In this way, it would be possible
to create a ”What If” pyramid with the possibility to check
own hypotheses.

3.2. Attribute View

Visualization of attributes of a pyramid’s nodes and
edges is done by two means: Enumeration of nodes and
edges by attribute list types and level, and statistical distri-
bution of attribute list types. The second will be described
later.

In the Attribute View, users can hierarchically navigate
through a so-called ”TreeView” (see [14]) with all the at-
tribute list types existing in the graph pyramid. Those at-
tribute list types are grouped by level and then in the next hi-
erarchy level by node or edge. Figure 4 shows both, a Pyra-
mid View of our example graph pyramid to the left and the
Attribute View to the right. Node 4 and 5 of level 1 are se-
lected in the Attribute View. In the Pyramid Subview those
two nodes got highlighted (see black arrows). The values
of both nodes’ attribute list type can be seen in the deep-
est TreeView hierarchy level.Default Raw Attributesis the
name of the attribute list type which specifies the color of
a node. This attribute list type has three elements: the RGB
values of the color. Here, node 4 is colored blue and node 5
red.

Right now, we primarily work only with the color at-
tribute because there are not any appropriate input exam-
ples yet. However, the system can work with an unlimited
number of different attributes, such as humidity, population
density, vegetation, etc.

Figure 5. Statistical information of distribu-
tion of point nodes, face nodes and quad-
edges over levels.

3.3. Statistics View

Global statistics are shown as chart diagrams within a
separate window. At present, the statistical information a
user can obtain are distributions of

• point nodes, face nodes, and quadedges [5],

• attribute list types of point nodes,

• attribute list types of face nodes,

• attribute list types of quadedges,

• contraction function sets in point graphs, and

• contraction function sets in face graphs,

each over levels. Figure 5 shows a distribution chart of point
nodes, face nodes, and quadedges, which gives an under-
standing of the reduction factor of the graph pyramid. The
(relative) number of attributes per level are useful for recog-
nizing which attributes get lost during contractions (this can
happen if they appear to be irrelevant at a certain level of ab-
straction).

This screenshot example mainly refers to the needs of
users from the Pattern Recognition and Image Processing
community. But it is also possible to show statistical infor-
mation about attributes (see points 2-4) based on geograph-
ical input data.

3.4. Thematical Map View

A 2D approach for visualization is the Thematical Map
View (TMV). This view shows for a selected level, sim-
ilar to the Level Subview, its projection to the input im-
age (calleddown projection) on which the graph pyramid
is based. Among other things, attributes of each node at the
level (for example the RGB value) are forwarded to nodes



Figure 6. Thematical Map View

of the base level along the tree paths built from the contrac-
tion kernels. In case of GML graphs as input, the down pro-
jection is performed with the help of a path per node for
the specification of the area shape that is represented by the
node. This information is part of the GML specification.

The view contains a slider to change the selected level,
see Figure 6. If there are selected nodes in the Pyramid
View, then the TMV displays the down projection only on
the basis of the selected nodes at the selected level of the
TMV. If there is a whole subtree selection in the Pyramid
View (cp. Section 4), then just the nodes in the selected
level are shown. The reason for this approach is that the pro-
jections would overlap if the TMV would map all selected
nodes of the subtree.

4. Navigation

A key point for better understanding a graph pyramid is
the possibility of navigating through the structure. The vi-
sualization of the pyramid can be seen as one piece that can
be grasped and manipulated. Users can look at the pyramid
from every possible viewpoint. They can move (pan) the
pyramid, rotate it and zoom in and out of it using the mouse.
We decided not to use keyboard interaction but only mouse
input for handling the pyramid, as a mouse—especially
when using dragging—gives the more natural feeling for
manipulating objects. The Java 3D API already features
classes that assist us in grabbing, moving, and zooming vi-
sual objects.

Figure 7. The left picture shows a selection
of one node. When the topmost green node
is clicked (see black arrow), all of its subn-
odes are automatically selected as well. At
the same time the selected subpyramid is
drawn, which can be seen in the right picture.

In general, there are two different node selection types:
attributes selection (which we have described in Sec-
tion 3.2) and subtree selection. Both selection types ex-
ist side by side. Selected nodes get a different color. We
defined subtree selected nodes to be light green and at-
tributes selected nodes to be yellow. These default val-
ues can be changed by the user. If a node is both subtree
and attributes selected then its color will be a mix-
ture of both. By clicking on a node, a subtree selection can
be made. This shows Figure 7. There, one node was se-
lected by mouse which results in eight highlighted nodes
altogether. The full subpyramid can be seen on the right.

The Graph Pyramid View that was described in Sec-
tion 3.1 represents a so-called Focus&Context technique,
see the article of Herman et al. [8] or the anthology of Card
et al. [1]. The user can focus on a specific level or subtree
whereas the context of this focus is displayed in the Pyra-
mid Subview.

5. Implementation

At the beginning of the planning phase of the applica-
tion some points became clear: The data structure will typ-
ically be huge, computing the data structure will take a lot
of time and there is not enough place on a monitor to vi-
sualize all of the data. These problems could be partially
solved by skillful implementation techniques and view de-
sign.

5.1. Interface to DGClib

At first, we had to handle the problem that the computa-
tional part of our application takes place within the DGClib



which was implemented in C++ for performance reasons.
There are several possibilities to transfer the data structure
together with all references to our Java application for visu-
alization. Due to the fact that platform independence was
a requirement, we implemented two corresponding inter-
faces:

Get Data from JNIOne solution was to compile the frame-
work as dynamic library and import it to Java via JNI (Java
Native Interface). So, it was possible to keep the major com-
putation load in C++ and simply use the results in our Java
program. By compiling the DGClib for different platforms,
it is available on different operating systems. Future releases
may also have the possibility to use different libraries at the
same time to be able to compare the changes made.

Get Data from Network InterfaceAnother solution would
be to develop a distributed application to acquire data from
a central server having a higher processing power than the
client computer on which our Java application runs. The
modular structure of the data structure is able to support
this solution very well. For the communication it is neces-
sary to implement a server interface as servlet and let the
application communicate via RMI (Remote Method Invo-
cation) or with a simple protocol designed for this purpose.

5.2. Architecture

To get a clear distinction between the data structure and
the Java-based visualization, the consequent implementa-
tion of a MVC (Model, View, Controller) model [4] was
forced. As a consequence, there are no direct references be-
tween them.

Model The computation of the graph pyramid and related
information is performed by the DGClib using dual graph
contraction algorithms. Details can be found in several arti-
cles [7, 10].

Controller The communication between graphical objects
is based on an event system that is very similar to the event
system used by Java. A Java classEventControl is used
for registration of listeners and distribution of events. The
used types of events are:

• ControlEvents : These are generated by creation,
activation, or removal of windows.

• DataEvents : They inform about all changes in as-
sociation to the data structure, like loading of levels,
changes in nodes, edges, or contraction kernels.

• GUIEvents : They are used for the communication
with the views. User interactions (especially high-
lights) are distributed by this event type.

The controller component guarantees a consistent and
stable interaction behaviour, easy extensibility with new

features, and a coherent coordination of our views. For ex-
ample, the node selection mechanism is realized by sending
a parametrizedGUIEvent object. After the selection of a
node within any view, e.g., within the Pyramid View, this
event is forwarded to all other coordinated views. The node
can be deselected in any other view. In general, a clever im-
plementation of the controller amortizes the effort relatively
quickly.

View The huge amount of objects (on average about the
number of pixels times 30 for an image as input) implies the
need for fast rendering. But we also intended a high-level
abstraction mechanism to specify 3D visualizations. Thus,
we decided to use Java 3D, which is based on OpenGL [13].
The objects are added to a scene graph (the universe) and
rendered with hardware support. This solution has some
special requirements on the operating system that provides
the handling of the drawing areas. This implies some prob-
lems with frame visibility, because Java draws the frames it-
self and it seems to be not fully compatible with the OS. It
occurs that hardware supported areas always overlap frames
painted by Java, independent if they are in front or not.
This problem should be solved with the next generation of
Java 3D.

5.3. Performance Analysis

Due to the huge size of the data structure it is even with
small images obvious that a visualization of the whole graph
pyramid will lead to difficulties in memory usage and vi-
sualization space. Up to a specific limit, these problems
can mostly be solved with clever solutions which focus on
special visualization aspects (e.g. TMV, Subtree Subview,
Level Subview, . . . ). At the moment, the end of the tech-
nical possibilities is reached soon. Currently, our approach
works fine for images up to approximately 50×50 pixel. A
PC used for development (AthlonXP 2800+, 1024MB Ram,
GF4, WinXP) requires for the computation of a 100×100
pixel image by the DGClib about 30 seconds. The result-
ing graph pyramid was built with 20 levels containing in
total 35.000 nodes, about 50.000 edges and some 1.000
contraction kernels. The creation of the scene graph with
Java 3D took about 1 minute. The memory peak was about
900MB and the rendered scene graph took about 200MB
permanently. The speed of rendering was very low and just
reached 2-3 fps.

Fortunately, we can avoid most of the above problems by
using pre-segmented input graphs via the GML exchange
format, cp. Section 2. In this way, the lower levels of the
graph pyramid can usually be discarded, because they are
often not so important for users like geographers or land-
scape ecologists. The number of graphical objects can be
drastically reduced and as result the visualization works fine
with larger input images.



(a) Graph Pyramid View with a subtree selection.

(b) Graph Pyramid View with another subtree selection.

Figure 8. Graph Pyramid View of the 20 ×45 pixel color image example.



(a) Graph Pyramid View

(b) A complex subtree extracted from the Subtree Subview.

Figure 9. Graph Pyramid View of the 12 ×12 pixel B/W image example.



6. Application Examples

The input of the screenshot examples in Figure 8 is a
small image (a tree and a lawn seat in front of a cloudy
sky at the background, see Figure 10(a)) of size 20×45 pix-
els and with 256 colors. The Pyramid Subview on the left
shows a very compact graph pyramid of height 6. Its reduc-
tion factor from level to level is very inconspicuous. The
same is illustrated by the Level Subview right above. Re-
garding the Subtree Subview of Figure 8(a), we see that
the selected subtree forms a simple path and not a real tree
with a higher node degree. It seems that the implementa-
tion of the DGC algorithm together with the current con-
traction rule set has difficulties with this kind of input. But
there are some contractions which can be observed in our
Subtree Subview in Figure 8(b).

(a) (b)

Figure 10. Input examples

Input of our second screenshot example in Figure 9 is a
smaller B/W image (four numbers on a white background,
see Figure 10(b)) of size 12×12 pixels. The Pyramid Sub-
view shows a graph pyramid of height 10. Its reduction fac-
tor from level to level is better as in our first example. The
Level Subview shows the graph at level 4 with only 22
nodes. Regarding the Subtree Subview of Figure 9(a), we
currently see that the selected subtree forms a small tree. In
Figure 9(b) a bigger subtree is displayed. Here, the user can
study the contraction process together with the Level Sub-
views shown in Figure 11 very well. The graph of the base
level in Figure 11(a) forms a regular grid as described in
Section 2. Then, nodes and edges are reduced by the DGC
algorithm level by level. For example, the center node of
level 4 in Figure 11(d) represents the white background of
the input image.

7. Conclusions and Future Work

In this paper, a novel approach for the visualization of hi-
erarchies of plane graphs, called graph pyramids, was pre-
sented. They are used for collecting, storing and analyzing
geographical information based on images or other input
data. The visualization covers several visualization needs of
geographers and of reseachers working on pattern recogni-

(a) Level 1

(b) Level 2

(c) Level 3

(d) Level 4

Figure 11. Level Subviews of the lower four
pyramid levels.



tion algorithms. As far as we know, our visualization tool is
the first one in the area of interactive visualization of graph
pyramids. All implemented views are closely related. They
offer many interaction and exploration possibilites to dis-
cover new correlations between contraction rules, themati-
cal maps, and the graph pyramid’s structure. We have im-
plemented a prototype version of the visualization in coor-
peration with our project partners the Institute of Survey-
ing, Remote Sensing and Land Information at the BOKU
Vienna as well as the Pattern Recognition and Image Pro-
cessing Group at the Vienna University of Technology.

We plan to evaluate our visualization tool together with
our users in the near future in order to improve its applica-
bility and usefulness. There are a lot of challenging prob-
lems in this area that we want to solve, e.g., visualizing the
evolution of landscape changes, interactive input of con-
traction rules from the visualization (cp. Section 3.1), vi-
sualization of graph pyramid changes through movements
of objects within an image sequence, and the visualization
of pyramid comparisons. From the viewpoint of Informa-
tion Visualization, we have to find better navigation solu-
tions and an advanced Focus&Context approach. This will
be one of our main research aims because an extensive study
of the existing literature yielded no applicable results for
this kind of problems.

Acknowledgements

We would like to thank Michael Schreyer for implement-
ing the DGClib interface and G̈unther Raidl for carefully
proof-reading this paper. Furthermore, we wish to thank
the members of the Institute of Surveying, Remote Sens-
ing and Land Information at the BOKU Vienna as well as
the members of the Pattern Recognition and Image Process-
ing Group (PRIP) at the Vienna University of Technology
for their useful ideas and support.

References

[1] S. K. Card, J. D. Mackinlay, and B. Shneiderman, edi-
tors. Readings in Information Visualization: Using Vision
to Think. Morgan Kaufmann, 1999.

[2] D. Flanagan.Java in a Nutshell. O’Reilly, 3. edition, 2000.
[3] K. S. Fu and J. K. Mui. A Survey on Image Segmentation.

Pattern Recognition, 13(1):3–16, 1981.
[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design

Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series. Addison-
Wesley, Reading, Massachusetts, USA, 1995.

[5] L. Guibas and J. Stolfi. Primitives for the Manipulation of
General Subdivisions and the Computation of Voronoi Dia-
grams.ACM Transactions on Graphics, 4(2):74–123, 1985.

[6] Y. Haxhimusa, R. Glanz, M. Saib, G. Langs, and W. G.
Kropatsch. Logarithmic Tapering Graph Paramid. In L. V.

Gool, editor,Proceedings of the 24th DAGM Symposium
2002, LNCS 2449, pages 117–124, Zürich, Swiss, 2002.
Springer.

[7] Y. Haxhimusa and W. G. Kropatsch. Hierarchical Image Par-
titioning with Dual Graph Contraction. In B. Michaelis and
G. Krell, editors,Proceedings of the 25th DAGM Symposium
2003, pages 338–345, Magdeburg, Germany, 2003. Springer.

[8] I. Herman, G. Melançon, and M. S. Marshall. Graph Vi-
sualization and Navigation in Information Visualization: A
Survey. IEEE Transactions on Visualization and Computer
Graphics, 6(1):24–43, 2000.

[9] M. Himsolt. GML – Graph Modelling Language.
www.uni-passau.de/Graphlet/GML , 1997.

[10] W. G. Kropatsch. Building Irregular Pyramids by Dual
Graph Contraction.IEE-Proc. Vision, Image and Signal Pro-
cessing, 142(6):366–374, 1995.

[11] N. R. Pal and S. K. Pal. A Review on Image Segmentation
Techniques.Pattern Recognition, 26(9):1277–1294, 1993.

[12] D. Selman.Java 3D Programming. Manning, 2002.
[13] D. Shreiner, M. Woo, J. Neider, and T. Davis.OpenGL Pro-

gramming Guide: The Official Guide to Learning OpenGL,
Version 1.4. Addison Wesley, 4. edition, 2003.

[14] K. Walrath and M. Campione.The JFC Swing Tutorial: A
Guide to Constructing GUIs. Addison Wesley, 1999.

[15] A. E. Walsh and D. Gehringer.Java 3D API Jump Start.
Prentice Hall PTR, 2002.




