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Abstract Approaches to investigate biological processes have been of strong in-
terest in the past few years and are the focus of several research areas like sys-
tems biology. Biological networks as representations of such processes are crucial
for an extensive understanding of living beings. Due to their size and complexity,
their growth and continuous change, as well as their compilation from databases
on demand, researchers very often request novel network visualization, interaction
and exploration techniques. In this chapter, we first provide background informa-
tion that is needed for the interactive visual analysis of various biological networks.
Fields such as (information) visualization, visual analytics and automatic layout of
networks are highlighted and illustrated by a number of examples. Then, the state
of the art in network visualization for the life sciences is presented together with
a discussion of standards for the graphical representation of cellular networks and
biological processes.

Keywords biological networks, visualization, graph drawing, visual analytics, in-
teraction, exploration, SBGN, visualization tools

1 Introduction

Many biological processes are represented as networks. Examples are networks
from the area of molecular biology such as metabolic networks, protein interac-
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tion networks, and gene regulatory networks, but also from other areas of the life
sciences such as ecological networks, phylogenetic networks, neuronal networks,
chemical structures, infection networks and so on. Network modeling, analysis, and
visualization are important steps towards a systems biological understanding of or-
ganisms and organism communities. The graphical depiction of such networks sup-
ports the understanding of the underlying processes and is essential to make sense
of much of the complex biological data that is now being generated.

A picture of a network is called a network diagram or a network map, see Fig. 1
for a SBGN map of a metabolic pathway. A network diagram representing biological
processes consists of a set of elements (called nodes or vertices) and their connec-
tions or interactions (called edges). These elements and connections often have a
defined appearance and are placed in a specific layout. Due to the size and com-
plexity of such networks, methods for their automatic visualization and interactive
exploration are desired.

Fig. 1 A map of a metabolic pathway shown in the SBGN standard [87], derived from KEGG [61],
computed and displayed by Vanted [110].
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Network diagrams or maps have been produced manually for a long time. Ex-
amples are textbooks on biochemistry [8, 96], biological network posters [94, 99],
and some electronic information systems such as ExPASy [4] and KEGG [61]. The
drawings in these resources have been created manually long before their use and
provide only a restricted view of the data. These maps represent the knowledge at
the time of their generation and are static, hence cannot be changed by an end-user.
Therefore, this type of biological network visualization is often called static visual-
ization.

Because of the size and complexity of biological networks, their steady growth
and continuous change, as well as the compilation of user-specific networks from
databases, novel automatic visualization, interaction and exploration methods are
desired. The generation of a network map on demand is called dynamic visualiza-
tion. Such visualizations are automatically created by the end-user from up-to-date
data. Their advantages are, inter alia, that they can be modified to provide particular
views at the data, and often navigation and exploration methods are supported in
interactive systems.

This review gives a brief introduction into (information) visualization, visual an-
alytics and automatic layout of networks, presents the state of the art in automatic
network visualization for the life sciences, and standards for the graphical repre-
sentation of cellular networks and biological processes. It is structured in two main
parts as follows: Section 2 provides information about the foundations from com-
puter science in general and looks into the subareas of information visualization,
graph drawing (network visualization), and visual analytics in particular. Section 3
takes a closer look at the visualization of biological networks and discusses meth-
ods, some important tools and the SBGN standard. It looks into the application and
extension of computer science methods for the special requirements of the life sci-
ences.

2 Background

The effective visualization of biological networks is influenced by research from
many different fields. In the past, such networks were simply considered as large
graphs (or hypergraphs), and a suitable visual representation was restricted to find-
ing an appropriate (static) graph layout. Nowadays, research in the visualization of
large and complex networks is more focused on interactive exploration and analysis
that includes the consideration of additional data that might be attached to vari-
ous graph elements or that might be the basis for the construction of biochemical
networks. The process of such a data collection and storage will heavily increase
in the future. This is especially true in systems biology where, for example, the
huge amount of *omics data automatically generated by high-throughput technolo-
gies [3, 39] lead to the challenge of interpreting all of these data sets in context
of networks. The fundamental problem today is to transform the data—which is
typically not pre-processed, erratic, stored in idiosyncratic formats, sometimes un-
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certain, and often composed of various types (multidimensional, time-dependent,
geo-spatial, . . . )—into information and make it useful/available/analyzable to an-
alysts. Often, this challenge is called the information overload problem. Positive
effects of such a transformation are then to discover something that is interesting
(like patterns or outliers) or to monitor a huge data set in real time [73].

Because of this general view on the problem, we provide a more general back-
ground section. First, we discuss the field of information visualization in the next
subsection. We highlight the most important definitions/aims and present a brief
high-level overview of visual representations and interaction techniques. Then, we
outline the field of graph drawing and discuss the most often used layout algo-
rithms. Finally, a relatively new field, called visual analytics, is introduced. Due
to page limitations, we cannot give a comprehensive overview of all aspects of
the aforementioned research fields. Instead, we present a selection of fundamental
ideas/approaches and refer to the literature including surveys.

2.1 Information Visualization

Information Visualization (InfoVis) is a research area which focuses on the use of in-
teractive visualization techniques to help people understand and analyze data. While
related fields such as scientific visualization involve the presentation of data that has
some physical or geometric correspondence, information visualization centers on
abstract information without such correspondences, i. e., information that cannot be
mapped into the physical world in most cases. Examples of such abstract data are
symbolic, tabular, networked, hierarchical, or textual information sources. The ever
increasing amount of data generated or made available every day amplifies the ur-
gent need for InfoVis tools. To give the field a firm base, InfoVis combines several
aspects of different research areas, such as scientific visualization, human-computer
interaction, data mining, information design, cognitive psychology, visual percep-
tion, cartography, graph drawing, and computer graphics [74, 75].

2.1.1 The Importance of Human Visual Perception and Visual Metaphors

Human information processing and the human capability of information reception
have to be adequately taken into account when developing visualization tools. This
should be reflected in an appropriate user interface design, a clean requirement anal-
ysis and modeling, and perhaps most important an efficient interaction between the
human analyst and the computer. Discussing the different features of our eye, the
various process models of human visual perception (incl. preattentive perception
and features), or our capabilities of pattern recognition would go beyond the scope
of this background section. There are many good textbooks that deal with these top-
ics in context of visualizations: we recommend the books of Ware [141], Kerren et
al. [75] and Ward et al. [140].
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Edward Tufte, one of the leaders in the field of visual data exploration, describes
in his illustrated textbooks [131, 132, 133] how information can be prepared so that
the visual representation depicts both the data and the data context. The use of suit-
able visual metaphors assists our brain in its endeavor to connect new information
received through the visual input channels to existing information stored in short-
or long-term memory [71]. Tufte inspired many InfoVis researchers in their ambi-
tion to develop novel visual representations for the data sets under consideration
(the process of representing a concrete data set by an appropriate visual structure
is called “visual mapping”) as well as interaction techniques which support a better
understanding of the data.

2.1.2 Visual Representations

Visual mappings explain how data models can be expressed using visual metaphors
and be converted into corresponding visual representations which are suitable for
interaction. This is typically done in the 2D space, because 3D representations usu-
ally introduce unnecessary clutter and navigation problems. We highlight the most
important visualization techniques for basic data types in the following paragraphs.
Of course there are other types of data that have to be considered. We refer to the
literature if the reader is interested to get more information, such as [27, 102] for
geo-spatial data, [2] for time-series data, or [41, 126, 140] for a comprehensive dis-
cussion of visual representations in general.

Visualization Techniques for Multivariate Data

Multivariate (or multidimensional) data sets can mostly be described as data tables
with n data objects and m attributes/features, i. e., for each object exists an attribute
vector with m dimensions. The attribute values can be classified into nominal, or-
dinal, or quantitative. In practice, we often have a large amount of data objects
and many attributes with different types. Finding a suitable visual representation is
thus challenging, and the right choice might depend on further parameters like ap-
plication domain, integration into a larger visualization environment or support of
specific interaction techniques. In general, visual mappings for multivariate data can
roughly be categorized as follows:

Point-based approaches: This class of techniques projects n-dimensional objects
from the data space to a lower-dimensional—typically 2D—display space [140].
There are different variations: scatter plot matrices, for instance, consist of a grid
of 2D scatter plots each showing a possible pair of dimensions/attributes [19],
see Fig. 2(b) for an example. Dimensional reduction techniques, such as multi-
dimensional scaling (MDS) [92, 145], principal component analysis (PCA) [53]
or self-organizing maps (SOMs) [80], project n-dimensional data records into
2D/3D directly. The idea is to preserve properties of the multivariate data space
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(a) Parallel coordinates that visualize a nutrient content data set with more than 1,000 data objects
and 14 attributes (available online [31]). Note that the visible polylines were interactively selected
in the 3rd and 10th axis.

(b) A scatter plot matrix showing data from
the Iris data set (available online [11]). Also
in this case, the colored points indicate data
selected by the user (see the grey colored se-
lection in the plot of the first column, second
row).

(c) Small icons/glyphs are embedded into the
graph nodes of a metabolic network. In this case,
they indicate reachable nodes in other (color-
coded) pathways [60].

(d) A pixel-based approach to visualize weather
data of a city. The rows represent years, and the
temperatures (color-coded from blue over white to
red) of each day are ordered from left to right [90].

(e) Sample tag cloud of a text document
which is related to information visualization
(generated with Wordle [32]).

Fig. 2 Some examples of often used visualization techniques. The screenshots in (a) and (b) were
produced with D3 [22].
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during the projection, i. e., similar data objects in data space should also be sim-
ilar in display space which is represented by neighborhood. Note that absolute
positions in the display space are less important; in contrast to relative positions.

Axis-based approaches: Here, a multidimensional data object is usually repre-
sented by a polyline, and its attribute values are marked on coordinate axes which
can be arranged in various ways. Thus, the user can read the attribute values
from the intersections between the coordinate axes and the polyline. The most
prominent examples are parallel coordinate systems [49] (cf. Fig. 2(a)) or star
plots [16] (also called Kiviat diagrams).

Icon-based approaches: Icon- or glyph-based approaches are coherent graphical
entities that represent the attribute values of a data record by modification of the
entity’s visual features, such as line thickness, size, color, orientation, etc. There
are many different realizations, such as stick figures [106], Chernoff faces [18]
or shape coding [7]. A variant of so-called rose diagrams [100] is shown in
Fig. 2(c).

Pixel-based approaches: Such approaches try to maximize the available display
space by mapping attribute values to single pixels. There is only one degree of
freedom to represent such a value by a pixel: its color. Therefore, the challenge
in the development of pixel-based representations is to arrange the used pixels on
the screen in a meaningful way. Well-known examples are recursive patterns [69]
or the VisDB tool [67] for the analysis of databases. Fig. 2(d) exemplifies the idea
in context of the visualization of weather data collected over time.

Visualization Techniques for Hierarchical Data and Networks

Networks and trees are in the center of our interest in this chapter. Therefore, we
provide an own Section 2.2 for a deeper discussion of suitable visualization pos-
sibilities for these data types and focus there on traditional node-link approaches.
For the sake of completeness, we want to note that there are also so-called space-
filling methods that try to solve some conceptual problems of node-link diagrams,
such as the high space consumption and difficult inclusion of many (and complex)
attributes into the drawing. Treemaps fall into this category in which the hierarchy is
recursively mapped to rectangular areas [52]. Other examples are Beamtrees [134],
sunburst approaches [108], or network matrices [1].

Visualization Techniques for Text and Documents

Today, the availability of texts and documents is overwhelming, and people want
to actively deal with them to solve specific problems. Typical questions are: what
documents contain a text about a specific topic? Or, are there similar documents
to those that I already have? Information visualization is capable of supporting the
aforementioned tasks in several ways.
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Text visualization: First, we focus on approaches to the visualization of a single
text document. Tag Clouds provide information about the frequency of words
contained in a text [63]. The approach uses different font sizes for each word
in the text to indicate how often a certain word is used in comparison with the
other words as shown in Fig. 2(e). Several extensions and related approaches
exist, such as Wordle or ManiWorlde [77, 138]. SparkClouds extend the origi-
nal tag cloud idea with a temporal variable by so-called “sparklines” [88]. Thus,
trends can easily be identified and analyzed. An approach for visual literary anal-
ysis is called Literature Fingerprinting [68]. It supports the visual comparison of
texts by calculating features (e. g., word/sentence length or measurement of vo-
cabulary richness) for different hierarchy levels and by creating characteristic
fingerprints of the texts.

Document visualization: Collections of text documents can be structured to some
extent (software packages, wikis, . . . ) or relatively unstructured (emails, patents,
. . . ). Early approaches, e. g., Lifestreams [34], simply arranged documents ac-
cording to specific attribute values such as time tags. More recent works analyze
the documents by metrics, such as similarity, and perform cluster analyses or
compute SOMs. Conceptually similar (by looking at the resulting visual rep-
resentation) is ThemeScapes [147] that follows a natural landscape metaphor.
Single documents are categorized and then mapped to a document map as topic
areas, whereas the documents themselves are shown as small dots. “Mountains”
in the landscape represent document concentrations in a thematic environment
(density), height lines connect concept domains, etc. There are many more recent
approaches that make use of the same metaphor, such as [104]. In order to carry
out comparisons of text documents using tag clouds, Parallel Tag Clouds [20]
arrange tags on vertical lines for each document. Identical words are then high-
lighted by connection lines.

2.1.3 Interaction Techniques

Interaction techniques in information visualization are mechanisms “for modifying
what the users see and how they see it” [140]. There are many taxonomies of inter-
action techniques in the literature which help to better understand the design space
of interaction; a nice overview is provided by [148]. In the following, we present a
simplified and shortened classification of interaction methods for information visu-
alization from our paper [73] which is based on [43] of its own.

Data and View Specification This category focuses on the data space and how
the data is visually represented (corresponds to data transformations and visual
mappings in the InfoVis Reference Model [14]).

• Encode/Visualize: Users can choose the visual representation of the data
records including graphical features, such as color, shape, etc. Visual repre-
sentations typically depend on the data types as discussed in Sect. 2.1.2.
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• Reconfigure: Some interaction techniques allow the user to map specific at-
tributes to graphical entities. An example is the mapping of attributes in a
multivariate data set to different axes in a scatter plot.

• Filter: This technique is of great importance as it allows the user to interac-
tively reduce the data shown in a view. Popular methods are dynamic queries
by using range sliders [146] or picking a set of nodes in a network visualiza-
tion for further analyses by performing a “lasso” selection [44].

• Sort: Ordering of records according to their values is a fundamental operation
in the visual analysis process. This is, for example, important in network anal-
ysis where nodes might be sorted based on specific centrality values [150].

View Manipulation Our second category addresses interacting with visual rep-
resentations (view transformations in the InfoVis Reference Model).

• Select: Selection is often used in advance of a filter operation. The aim is to
select an individual object or a set of objects in order to highlight, manipulate,
or filter them out. Examples include putting a placemark on a virtual map
to highlight a spatial area or the specification of attribute ranges in parallel
coordinate systems as seen in Fig. 2(a).

• Navigate/Explore: This important class of interaction techniques typically
modify the level-of-detail in visualizations following the mantra overview
first, zoom and filter, details on demand [121]. Well-known approaches are
focus&context [111], overview&detail [51], zooming&panning [137], or se-
mantic zooming [127].

• Coordinate/Connect: Linking a set of views or windows together to enable
the user to discover related items. Brushing and linking techniques (e. g., his-
togram brushing [89]) are used in almost all information visualizations, such
as in [59].

• Organize: Large visualization systems often consist of several windows and
workspaces that have to be organized on the screen. Adding and removing
views can be confusing to the analyst. Some systems help the user to bet-
ter overview and to preserve his/her mental map by grouping of views or by
assigning specific places where they have to appear [50, 91].

Note that it is possible and also common practice to combine the aforementioned
techniques. The given literature references only point to selected example works
and make no claim to be complete.

2.2 Graph Drawing and Network Visualization

In this subsection, we distinguish between graphs and multivariate networks. A
(simple) graph G = (V,E) consists of a finite set of vertices (or nodes) V and a set
of edges E ⊆ {(u,v)|u,v ∈ V,u 6= v}. Whereas, a multivariate network N consists
of an underlying graph G plus additional attributes that are attached to the nodes



10 Andreas Kerren and Falk Schreiber

and/or edges. To describe the fundamental ideas of graph visualization algorithms
more efficiently, we have to provide some definitions:

• An edge e = (u,v) with u = v is called a self-loop.
• If an edge e exists several times in E then it is called a multiple edge.
• A simple graph has no self-loops and no multiple edges. Here, we assume that

all graphs are simple graphs for the sake of convenience.
• The neighbors of a node v are its adjacent nodes.
• The degree of a node v is the number of its neighbors.
• A directed graph (or digraph) is a graph with directed edges, i. e., (u,v) are or-

dered pairs of nodes.
• A directed graph is called acyclic if it has no directed cycles, i. e., there is no

directed path where the same node is visited twice.
• A graph is connected if there is a path between u and v for each pair (u,v) of

nodes.
• A graph is planar if it can be drawn in the 2D plane without intersections of

edges (edge crossings).

2.2.1 Traditional Graph Drawing (GD)

Graph drawing algorithms compute a 2D/3D layout of the nodes and the edges,
mainly based on so-called node-link diagrams [141]. They play a fundamental role
in network visualization. Particular graph layout algorithms can give an insight into
the topological structure of a network if properly chosen and implemented. The
graph readability is affected by quantitative measurements called aesthetic crite-
ria [24], such as

• minimization of edge crossings,
• minimization of the drawing area,
• displaying the symmetries of the graph topology,
• constraining edge lengths,
• constraining the number of edge bends, and
• maximization of the resolution.

Thus, graph drawing generally deals with the ways of drawing graphs according
to the set of predefined aesthetic criteria [17]. A problem is that these criteria are
often contradictory, and problems which aim to optimize the criteria are often NP-
hard. Therefore, many GD algorithms are heuristics. Note that we only focus on
traditional GD approaches in this subsection. There are further possibilities to rep-
resent graphs, such as matrix representations [1] or hybridizations between both
approaches [44] (cf. Sect. 2.1.2).

In the following paragraphs, a selection of drawing approaches is presented.
These are layout methods for trees, force-based layout techniques, and hierarchical
drawings. There are many more approaches not discussed here, for instance, orthog-
onal layouts [29], visualization of hypergraphs [9], or dynamic layouts for graphs
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that change over time [25] (a possible application of dynamic approaches is visualiz-
ing the evolution of biochemical networks [112], for instance). Implementing good
graph drawing algorithms is usually complicated and time consuming. Therefore, a
number of different open source libraries were developed, such as JUNG [105] and
many others, that allow to simply call predefined methods for the computation of a
specific graph layout.

Tree Drawings

Trees are a special case of directed (acyclic) graphs that usually have a distinguished
node called the root of the tree. We can regard a tree as a digraph with all edges
oriented away from the root. A binary tree is a rooted tree where each node has
at most two children (we assume here that binary trees are ordered). The Graph
Drawing community developed a lot of different layout methods for binary and
general trees. In this context, there is another set of more specified aesthetic criteria
especially for (binary) trees:

• Nodes at the same level of the tree should lie along a straight line, and the straight
lines defining the levels should be parallel.

• A left subtree should be positioned to the left of its parent node and a right subtree
to the right.

• A parent node should be centered over its subtrees.
• Two isomorphic subtrees should be drawn equally. Graph isomorphism means

that there is a bijection between two graphs, so that any two nodes u and v are
adjacent in the first graph if and only if their bijections are adjacent in the second
graph.

• A tree and its mirror image should produce drawings that are reflections of one
another.

• Integer coordinates should be preferred which leads to a grid drawing at the end.

Many tree layout algorithms use a divide and conquer strategy, such as the well-
known Reingold/Tilford algorithm for binary trees [107]. In a postorder traversal of
the tree, the following simple steps are executed:

1. Draw the left subtree.
2. Draw the right subtree.
3. Combine both drawings with a specific minimum distance.
4. Place the root of both subtrees at the next upper level exactly in the center of its

subtrees.
5. In case the parent node has only one subtree, place the root in a specific horizontal

distance.

Reingold/Tilford runs in linear time and can relatively easily be extended for the
layout of general trees [13, 139]. Of course, there are further possibilities of draw-
ing trees with the help of node-link diagrams, such as radial layouts, H-trees, or
HV-trees. We refer the reader to the standard literature [24, 64]. Fig. 3 shows two
example layouts computed with the yED tool [149].
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(a) A standard tree layout
for general trees.

(b) A so-called HV-drawing in which the layout algorithm
switches between the horizontal and vertical orientation.

Fig. 3 Two sample tree layouts that were computed and displayed by the yED graph editor [149].
The identical input tree has 30 nodes and 29 edges.

Force-based Drawings

Force-based layout techniques use a physical analogy to draw graphs and are widely
used in practice. This is because of several reasons: the physical metaphor makes
them easy to understand and to code, the results are suitable for many application
fields, they are easy to extend with additional constraints, and the process of ob-
taining an equilibrium state (see below) can be animated which looks pretty nice.
A simple version of a forced-based layout algorithm using spring and electrical re-
pulsion forces is introduced in the following. Here, the edges between nodes are
modeled as springs, and the nodes can be considered as charged particles that repel
each other. For the x-component of the force vector on a node v the following holds
(y-component analogous):

∑
(u,v)∈E

(stiuv(duv− luv))x̂uv + ∑
(u,v)∈V×V

repuv

d2
uv

x̂uv (1)

Here, x̂uv denotes the unit vector of (xv− xu). duv is the Euclidean distance between
u and v, luv is the zero-energy (natural) length of the spring between u and v (i. e.,
no force if duv = luv), stiuv ∈ [0,1] is the stiffness of the spring between u and v (i. e.,
the larger this parameter the more the tendency for duv to be close to luv), and finally
repuv is the strength of the electrical repulsion between the two nodes. In Eq. 1,
the first sum represents the spring force between two nodes u and v connected with
an edge and the second sum the repulsion force between v and other nodes. Both
forces together build a complete force system for all graph elements. Depending on
the underlying physical model, the repulsion forces avoid that nodes are getting too
close, and the spring forces provide a uniform edge length, for instance. In the cur-
rent formula, Hook’s law is used to specify the spring force between two nodes, i. e.,
if the distance between the two nodes is larger than the natural length of the spring,
then the nodes attract each other. And the strength of the attraction is proportional
to the difference between distance and natural length.

A simple algorithm that computes a final graph layout consists of a loop which
firstly computes the forces of all nodes and then moves each node a bit into the
direction of its force vector computed in Eq. 1. At the beginning, all nodes are
positioned randomly. The loop is left if the sum of all forces together is small enough
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(a) Result of a forced-based layout algorithm. (b) Layered (or hierarchical) drawing.

Fig. 4 Two sample graph layouts that were computed and displayed by the yED graph editor [149].
The identical input digraph has 29 nodes and 39 edges.

(equilibrium state) or after a specific number of iterations. This strategy works for
undirected and directed graphs, with and without cycles, cf. Fig. 4(a).

Layered (Hierarchical) Drawings of Directed Graphs

A general aim for the layout of a directed graph is to compute a so-called monotone
drawing in which all edges point into the same direction. Such a monotone drawing
has some advantages in the interpretation of the digraph’s topology [47]. Obviously,
the input digraph must be acyclic in that case, otherwise we would get edges that
flow backwards (called feedback edges). In practice this apparent hard condition is
not really a problem, because we can use such a drawing method for general directed
graphs if we change the direction of a minimal number of the feedback edges. This
step is known as cycle removal. By doing so, we get a directed acyclic graph (DAG)
that is drawn by using a method for computing monotone layouts, such as a layered
drawing as explained in this paragraph. If the final layout is ready, we simply reverse
the feedback edges again.

Many people prefer a hierarchical structure of the final graph layout, i. e., the
nodes of the graph are arranged on vertical or horizontal, parallel layers in the 2D
plane. Often, such a structure is already given by the input data. For instance, if
someone wants to visualize hyperlinks (edges) between the HTML pages (nodes)
of a website, then usually the pages are already hierarchically organized. In the
following, we briefly present a standard technique for layered drawings that is based
on the fundamental work of Sugiyama et al. [129].
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The basic idea is very simple and intuitive; it has three phases. In the first phase,
the nodes of the graph are assigned to a number of layers (we can skip this phase
if there is already a layering in the input graph). This layer assignment problem is
NP-complete if we want to minimize the height and the width of the final layering.
A further complication occurs if edges span over several layers: then we have to
introduce so-called dummy nodes that lie on the spanned layers, i. e., a long edge
is thus subdivided by the dummy nodes. This strategy causes modified edges which
only reach from one layer to the next one (the digraph is called proper in such cases)
and is needed for the second phase. After the layer assignment, we have to eliminate
the number of edge crossings. This is done by reordering the graph nodes and the
dummy nodes within each layer. With the help of the dummy nodes, the algorithm
gets control over the edge positioning, and in consequence, it is possible to avoid
crossings of edges that span over several layers. Minimizing edge crossings in a
proper layered digraph is NP-complete, even if there are only two layers. Note that
the node positions (x-coordinates) on the layers are relative only up to now (the
y-coordinates of the nodes are already specified by the node layers if we assume
to have horizontal layers). The final phase is the real coordinate assignment of all
nodes on the layers, i. e., we assign concrete x-coordinates for each (normal and
dummy) node. Also this task leads to an optimization problem that can be solved,
for instance, by linear programming (LP). Constraints of the LP are then the fixed
orderings in the layers, and the target function is specified by the straightness of the
edges. As a final step, we remove the dummy nodes and obtain the wished layered
drawing as shown in Fig. 4(b).

2.3 Multivariate Network Visualization

Good drawing algorithms as described in the previous subsection will not solely
solve the problem of visualizing multivariate networks. There are several reasons for
this statement. First, the most traditional graph drawings do not scale well, i. e., they
are not able to represent huge data sets with many thousands of nodes and/or edges.
Second, additional multivariate data cannot be intuitively embedded into a standard
drawing. The InfoVis community tried to address those issues by visualization ap-
proaches that provide filtering and interaction possibilities in order to reduce the
number of graph elements under consideration as well as by methods to visually an-
alyze attributes in context of the underlying graph topology. Several approaches can
be found in the literature that attempt to offer solutions for the problem of visualiz-
ing multivariate networks: multiple and coordinated views, integrated approaches,
semantic substrates, attribute-driven layouts, and hybrid approaches [57]. We will
discuss these concepts in the following paragraphs.

Multiple and coordinated Views: This category of solutions aims to combine sev-
eral views and present them together. Coordinated views allow the use of the most
powerful visualization techniques for each specific view and data set [41, 109].
As an application example, we highlight the work of Shanon et al. [120] who re-
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alized this idea in the network visualization domain. They use two distinct views:
one view shows a parallel coordinate approach for the visual representation of the
network attributes, and the other view displays a node-link drawing of a graph.
Their tool is equipped with a variety of visualization and interaction techniques;
both views are coordinated by linking and brushing [126] techniques. The draw-
back of multiple views is that they split the displayed data because of the spatial
separation of the visual elements.

Integrated approaches: To provide a combined picture, attributes and the under-
lying graph can be displayed in one single view. “Integrated views can save space
on a display and may decrease the time a user needs to find out relations; all data
is displayed in one place.” [41]. One example is described in Borisjuk’s et al. [10]
work on the visualization of experimental data in relation of a metabolic network.
The authors used a straightforward approach by employing small diagrams in-
stead of representing the nodes as simple circles or rectangles. Each diagram,
e. g., a bar chart, shows experimental data that is related to the regarded node.
This approach provides a view to all available information, but the embedding of
the visualizations into the nodes causes the nodes to grow in size. This issue may
affect the readability of the network due to the overlaps that may appear when

Fig. 5 Overview of the Network Lens tool [58]. The graphical user interface is divided into three
distinctive parts: the main network visualization area, the lens information area on the right hand
side, and the bottom part where user-produced lenses are preserved. It offers a way to visualize
additional network attributes (displayed inside of the circular lens), while preserving the overall
network topology and context. The lens in the screenshot covers one node only and shows a small
parallel coordinate diagram with four quantitative as well as four nominal attributes belonging to
that node. The user is able to move the lens with the mouse or to translate the graph behind the
lens.
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the number of nodes and the attributes is high [70]. Thus, is does not scale well.
However, the problem of space usage and clutter introduced by such approaches
can be avoided by using focus&context techniques (cf. Sect. 2.1). Magic lenses
are one of several possibilities that are able to interactively visualize the node
attributes within the same view as exemplified in Fig. 5.

Semantic substrates: In order to further avoid clutter in multivariate network vi-
sualizations, some researchers realized the idea of so-called semantic substrates
that “are non-overlapping regions in which node placement is based on node at-
tributes”: Shneiderman and Aris [122] introduced this idea and combined it with
sliders to control the edge visibility and thus to ensure comprehensibility of the
edges’ end nodes. One conceptual drawback of such approaches is that the un-
derlying graph topology is not (completely) visible.

Attribute-driven layouts: Those layouts use the display of the network elements
to present insight about the attached multivariate data instead of visualizing the
graph topology itself. While being similar to semantic substrates, this technique
does not necessarily place the nodes into specific regions. Instead, it uses calcu-
lations based on node attributes to control the placement of a node in the graph
layout. An example is PivotGraph [142] which uses a grid-layout to show the
relationship between (node) attributes and links.

Hybrid approaches: They combine at least two of the previously discussed tech-
niques. The most common combinations are multiple coordinated views with
any of the integrated approaches. For instance, Rohrschneider et al. [112] inte-
grate additional attributes of a biological network inside the nodes and edges, see
Fig. 6. The authors also use other visual metaphors for creating multiple coordi-
nated views to show time-related data of the network.

Fig. 6 The screenshot shows a tool for the visual analysis of dynamic metabolic networks [112].
On the left hand side, two time series charts of selected attributes display attribute dynamics over
time. Interval charts represent the dynamic topology of the graph in terms of life times of metabo-
lites, enzymes and reactions. On the right, the graph scene shows the set union graph (= the super
graph that summarizes all nodes/edges of the individual graphs that appear over time) with the
applied node coloring scheme which supports distinguishing between older and newer nodes.
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2.4 Visual Analytics

Visual Analytics (VA) “is the science of analytical reasoning facilitated by interac-
tive visual interfaces” [130]. A crucial property of this research field is that compu-
tational methods of data analysis are combined with interactive visualization tech-
niques in order to analyze data more efficiently. Automatic data analysis covers var-
ious aspects from data storage and organization to automatic analysis algorithms,
such as support vector machines, neural networks, PCA, etc. It might be classi-
fied among others into data management, data mining, and machine learning. For
many data analysis problems, fully automated analysis methods only work for well-
defined and well-understood problems, i. e., there has to exist a model of the un-
derlying problem [65]. Otherwise, traditional data mining techniques will not work.
Even if a model exists, then the results of the automated analyses have to be suf-
ficiently communicated to and interpreted by analysts. Here, interactive visualiza-
tions come into the play as they are able to support the analyst to discover (possibly
unexpected) patterns, trends, or relationships in the data. Interaction techniques (as
presented in Sect. 2.1.3) are of particular importance to visually analyze large vol-
umes of data. Interaction allows, among other things, to explore “unknown” data
collections following Shneiderman’s mantra of information visualization [121] or

Fig. 7 Overview of the ViNCent user interface [150]. The center shows the radial centrality view of
the input network. The right side displays the corresponding histograms of the network centralities
as well as detailed values of the network centralities for the currently hovered node. Histograms
can be used to filter the views. The left panel allows changing the render settings and displays
an overview of the respective node-link layout of the network. A node group has been manually
selected and is shown as a light-blue stripe along the outer circle in the centrality view as well as
in the overview (bottom left) by using a background region of the same color.
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to build hypotheses with the help of “What if?”-questions and to verify them vi-
sually or with algorithmic methods. The need to combine interactive visualization
with computational analysis methods is obvious and opens novel possibilities to ad-
dress the information overload problem. A more detailed discussion on VA can be
found in [65, 66, 130].

As an example from the field of visual network analysis, we have selected the
ViNCent tool [72, 150], that combines exploratory data visualization with automatic
analysis techniques, such as computing a variety of centrality values for network
nodes as well as hierarchical clustering or node reordering based on centrality val-
ues. Automatic and interactive approaches are seamlessly integrated in one single
analysis framework which provides insight into the importance of an individual node
or groups of nodes and allows quantifying the network structure, see Fig. 7.

3 Visualization of Biological Networks

Visual representations of biological networks are widely used in the life sciences.
Examples are shown in textbooks, on pathway posters, in databases and by a large
number of tools for the analysis and visualization of biological processes. Well-
known software tools are listed in Sect. 3.1.2. Software tools often use established
layout methods as described in Sect. 2.2 to visualize biological networks automati-
cally. Sometimes those algorithms are modified, for example, by adding extra forces
to force-based approaches. However, often these methods do not or only partly take
into account specific requirements for the visualization of a particular biological net-
work and hence these visualizations are usually difficult to understand, especially if
large networks are visualized.

In the following subsections, we will introduce some typical solutions for com-
mon networks from molecular biology, discuss domain-adapted solutions for par-
ticular networks, list major tools for the visualization of biological networks, and
finally discuss the Systems Biology Graphical Notation (SBGN) as the graphical
standard for biological networks.

3.1 Methods

3.1.1 Early Approaches

Driven by the emerging availability of biological networks from databases in the
mid-1990s, several groups started to either use existing graph drawing algorithms
or designing extensions to these algorithms to automatically visualize biological
networks. In the following, we present such early work for the three major types of
networks from molecular biology.
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Signal Transduction and Gene Regulatory Networks

These networks represent regulation or directed interaction between biological en-
tities (such as genes) and are usually modeled as directed graphs, see Fig. 8(a).
There are two widely used methods to visualize such networks: force-based and
layered drawings. Several systems provide force-based graph drawing methods for
the visualization of these networks, for example, PATIKA [23] and GeNet [118].
These tools typically use well-known force-based algorithms such as Eades’ algo-
rithm [28], often based on existing layout libraries and systems like Pajek [5] or
yFiles [144]. There are some improvements of the general force-based method to
consider application-specific requirements such as the representation of subcellular
locations. One example is implemented in the PATIKA system.

Signal transduction and gene regulatory networks are directed graphs and, for
example, the visualization of the main direction is important to understand the flow
of information through the network. Therefore layered drawing methods are often
employed for the computation of maps of these networks. Some tools using this

(a) A gene regulatory net-
work (nodes represent genes,
edges represent regulation, la-
bels show gene names).

(b) A protein interaction net-
work (nodes represent pro-
teins, edges represent interac-
tion).

(c) A metabolic network
(nodes represent metabolites,
enzymes, and reactions; edges
represent consumption and
production).

Fig. 8 Three sample layouts of biological networks. (a) and (b) were computed and displayed by
the Vanted system [110]; (c) was computed by BioPath [33].
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layout method are TransPath [85] and BioConductor [15]. Often layout libraries for
layered drawings such as dot [84] are used.

Protein Interaction Networks

These networks represent proteins and their interactions and are modeled as undi-
rected graphs, see Fig. 8(b). Several systems which employ force-based graph draw-
ing methods for their visualization have been presented, for instance [12, 42, 98,
119]. Also some work on interactive exploration of protein interaction networks has
been done, for example, by combining circular and force-based layouts and smooth
transitions between subsequent drawings using animation [35].

Metabolic Networks

These networks represent the transformation of metabolites into each other and
are usually modeled as directed graphs, see Fig. 8(c). There are two common ap-
proaches to visualizing metabolic networks: force-based and layered drawing meth-
ods. Several network analysis tools support force-based layouts, for example, Bio-
JAKE [113], Cytoscape [119], PathwayAssist [101], and VisANT [46]. Frequently
they visualize not only metabolic, but also other types of biological networks. How-
ever, force-based approaches mostly do not meet common application specific re-
quirements. Such requirements are, inter alia, different sizes of nodes, the special
placement of co-substances and enzymes, and the general direction of pathways.

Layered drawings are often used as they emphasis the main direction in the net-
work. Tools supporting layered drawings are largely based on existing software li-
braries. Such solutions show the main direction within networks and partly deal
with different node sizes. However, there is no specific placement of co-substances
or special pathways such as cycles. Examples are PathFinder [40] (which uses the
VCG library [114]) and BioMiner [123] (which employs yFiles [144]). The earliest
approach to our knowledge is from Karp and Paley, where the complete network is
separated into parts such as trees, paths and circles, and the parts are laid out sep-
arately [62]. Although not a layered drawing algorithm as described in Sect. 2.2,
it results in an overall layout with some layered structure. Extended layered draw-
ings consider cyclic structures within the network or show pathways of different
topology using different layouts, such as the algorithm by Becker and Rojas [6]. An
advanced layered drawing algorithm for metabolic networks considering all relevant
visualization requirements has been presented in [115].

3.1.2 Current Approaches and Tools

There are many challenges in current research of biological network visualization
and visual analytics, such as visual analysis of integrated and correlated data, visual
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comparison of networks, integrated and overlapping networks, graphical represen-
tation of paths and flows, and hierarchical networks, see [3, 39]. Consequently, this
field has become very research active and, for example, several special algorithms
have been presented in the last few years concerning the layout of biological net-
works. Among them are grid-based methods [81], clustered circular layouts [38],
and constraint-based methods [117]. The quality of these specialized layout algo-
rithms is often much better than just applying standard methods, an example is
shown in Fig. 1.

A broad range of more than 170 tools for the modeling, analysis and visualization
of biological networks is nowadays available on the Internet. These tools change of-
ten rapidly, new tools emerge, and old tools obtain new features or are not longer
maintained. Therefore only a small set of some important tools will be listed here.
Other reviews are available, for example, Suderman and Hallett in 2007 compared
more than 35 tools regarding network and data visualization [128], Kono et al. com-
pared tools for pathway representation, mapping and editing, and data exchange in
2009 [83], and Gehlenborg et al. looked at visualization tools for interaction net-
works and biological pathways in 2010 [39].

The following tools may be of interest to the reader. As the functionality of the
tools changes rapidly over time, we do not provide a feature list but encourage the
reader to visit the respective tool websites given below.

• BiNa [86] (http://bit.ly/y6ix9i)
• BioUML [82] (http://bit.ly/yIETIt)
• CellDesigner [36, 37] (http://bit.ly/A0FQiF)
• CellMicrocosmos [125] (http://bit.ly/WJ8cnE)
• Cytoscape [119, 124] (http://bit.ly/wY2sbG)
• Omix [26] (http://bit.ly/zL52vB)
• Ondex [78, Chapter 5] (http://bit.ly/AetZjz)
• Pathway Projector [83] (http://bit.ly/zo5x2M)
• PathVisio [135] (http://bit.ly/zunwxW)
• Vanted [56, 110] (http://bit.ly/Aigr0T)
• VisAnt [45, 46] (http://bit.ly/agZBni)

3.2 SBGN Standard

Biological networks shown in books, articles and online resources are often diffi-
cult to understand as the same biological concept can be shown by using different
graphical representations. Therefore it is time consuming to get familiar with the
graphical notation used, but this also carries the danger of misinterpretation. Con-
sequently, particularly for molecular-biological networks such as gene regulatory,
signal transduction, protein interaction and metabolic networks, there were several
attempts to define a uniform representation. This includes Kitano’s Process Dia-
grams [76], Kohn’s Molecular Interaction Maps [79], and Michal’s representation
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of metabolic pathways [95]. However, a single map type is often not enough to ade-
quately illustrate the complexity of biological processes, and none of the mentioned
attempts has asserted itself as a widely used standard.

Since 2006, there is a new initiative which partly builds on earlier standardiza-
tion attempts and is closely connected with the successful exchange format SBML
(System Biology Markup Language) [48]: SBGN – the System Biology Graphical
Notation [87]. Additional material can be found under http://sbgn.org, and
formal specifications are available [93, 97, 103], see the previously mentioned web-
site for the latest version of the specification.

(a) Part of a metabolic pathway in SBGN notation (pathway derived from
MetaCrop [116], an information system based on Meta-All [143]).

(b) Part of a gene regulatory network in SBGN notation (derived from RIMAS [54]).

Fig. 9 Two examples of SBGN maps.
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SBGN supports three corresponding views or maps on a biological process: Pro-
cess Description which describes elements (cellular building blocks like molecules,
nucleic acid sequences, but also other information like observable events) and inter-
actions between these elements; Entity Relationship which presents the interaction
between biological entities and the influence of entities on other elements; and Ac-
tivity Flow which focuses on the flow of information from one activity to another.
These different language types enable to show different aspects of biological pro-
cesses. A process description contains, for example, a molecule often several times
in different states, e. g., phosphorylated or unphosphorylated, while both other map
types show in each case only one occurrence of such a molecule. Fig. 9 shows two
molecular-biological networks in SBGN notation.

There are several tools supporting SBGN, including CellDesigner [37], EPE (Ed-
inburgh Pathway Editor) [30], PathVisio [135], and SBGN-ED [21] (an extension of
Vanted [110]). A comparison has been done by Junker et al. [55]. There is also
SBGN support for tool developers [136].
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