
 © Emerald Group Publishing Limited 1

Web-based Structured Hypermedia Algorithm
Explanation System

Elhadi Shakshuki

Email: elhadi.shakshuki@acadiau.ca
Jodrey School of Computer Science

Acadia University
Wolfville, Nova Scotia, Canada B4P 2R6

Andreas Kerren

 Email: kerren@acm.org
School of Mathematics and Systems Engineering

V¨axj¨o University, Växjö, Sweden

Tomasz Müldner
Email: tomasz.muldner@acadiau.ca
Jodrey School of Computer Science

Acadia University
Wolfville, Nova Scotia, Canada B4P 2R6

Abstract: Purpose – Development of a system called Structured Hypermedia Algorithm Explanation (SHALEX), as a remedy for the

limitations existing within the current traditional algorithm animation systems. SHALEX provides several novel features, such as use of

invariants, reflection of the high-level structure of an algorithm rather than low-level steps, and support for programming the algorithm in any

procedural or object-oriented programming language.

Design/methodology/approach – By defining the structure of an algorithm as a directed graph of abstractions, algorithms may be studied

top-down, bottom-up, or using a mix of the two. In addition, SHALEX includes a learner model to provide spatial links, and to support

evaluations and adaptations.

Findings – Evaluations of traditional algorithm animation systems designed to teach algorithms in higher education or in professional training

show that such systems have not achieved many expectations of their developers. One reason for this failure is the lack of stimulating learning

environments which support the learning process by providing features such as multiple levels of abstraction, support for hypermedia, and

learner-adapted visualizations. SHALEX supports these environments, and in addition provides persistent storage that can be used to analyze

students’ performance. In particular, this storage can be used to represent a student model that supports adaptive system behavior.

Research limitations/implications – SHALEX is being implemented and tested by the authors and a group of students. The tests performed

so far have shown that SHALEX is a very useful tool. In the future we plan additional quantitative evaluation to compare SHALEX with

other AA systems and/or the concept keyboard approach.

Practical implications – SHALEX has been implemented as a web-based application using the client-server architecture. Therefore, students

can use SHALEX to learn algorithms through both distance education and in the classroom setting.

Originality/value – This paper presents a novel algorithm explanation system for users who wish to learn algorithms.

Keywords: Interactive learning environments, multimedia/hypermedia systems, programming and programming languages, Navigation

Article Type: Research paper

Andreas Kerren
This is a post-peer-review, pre-copyedit version of an article published in the International Journal of Web Information Systems. The definitive
publisher-authenticated version [E. Shakshuki, A. Kerren, and T. Müldner. Web-based Structured Hypermedia Algorithm Explanation System.
In International Journal of Web Information Systems, 3(3):179-197, 2007. Emerald Group Publishing] is available online at: http://www.emeraldinsight.com/10.1108/17440080710834238.

© Emerald Group Publishing Limited 2

Introduction

The analysis and the understanding of algorithms is a very important task for teaching and learning algorithms. We advocate

a strategy, according to which one first tries to understand the fundamental nature of an algorithm, and then—after reaching a

higher level of awareness—chooses the most appropriate programming language to implement it. To facilitate the process of

understanding of algorithms, their visualization, in particular animation is considered to be the best approach. This approach is

described in the next subsection.

Algorithm Animation

An Algorithm Animation (AA) visualizes the behaviour of an algorithm by producing an abstraction of both the data and the

operations of the algorithm. At first, it maps the current state of the algorithm into a picture which is then animated based on the

change between two succeeding states of the running algorithm. This way, algorithm animation facilitates better understanding

of the inner workings of the algorithm. Specifically, it reveals algorithm’s deficiencies and advantages, thereby allowing further

optimization (Gloor, 1992, 1998a). Price et al. (1993) distinguished between algorithm animation and program animation. The

former term refers to a dynamic visualization of the higher-level descriptions of software (algorithms) that are later

implemented in software. The latter term refers to the use of dynamic visualization techniques to enhance human understanding

of the actual implementation of programs or data structures. They defined both areas of study to collectively be a part of

Software Visualization (SV).

Many researchers have attempted to describe the development and use of algorithm animation. For more details and an

overview of algorithm animation tools, interested readers are referred to the introduction Stasko (2002) in the book (Diehl,

2002). Furthermore, two extensive anthologies on software visualization providing overviews of the field were published in

1996 and 1998 (Eades and Zhang, 1996; Stasko et al., 1998). The latter anthology contains revised versions of some seminal

papers on classical algorithm animation systems as well as educational and design topics. Other published articles provide

summaries of different aspects of algorithm animation, including taxonomies (Brown, 1988), the use of abstraction (Cox and

Roman, 1992), and user interface issues (Gloor, 1998b).

Drawbacks of Traditional Systems

Evaluations of systems designed to explain algorithms using various visualization and animation techniques have not shown

that these systems are educationally effective (Hundhausen et al., 2002). However, software evaluations are difficult to verify

and widely used test designs have various disadvantages, see (Baumgartner, 1999). If we agree that weak evaluation results are

true and significant then we have to look for reasons to prevent such results in the future.

One reason of a failure could be that many existing algorithm animation systems resemble visual debuggers in that they show

the execution of the algorithm by code stepping, work at the lowest level of abstraction, and illustrate only the primitive code

statements. This approach constrains users to view the code in the order of execution, which is the wrong information for

understanding the algorithm. It has a poor cognitive fit with the plan-and-goal structures that users are trying to extract from the

code, see Petre et al. (1998a). Furthermore, runtime interpretation requires specific input data and cannot consider all possible

inputs and often suffers from the lack of focus on relevant data; see Braune and Wilhelm (2000). A related problem is the

missing representation of algorithm invariants in most algorithm animation systems. Existing systems do not address the issue

of implementing algorithms in specific programming languages, paying attention to their structure, or finding their time

complexity. Adapting facilities for the learner behaviour are not supported, nor is the additional use of media beyond graphics

and animation.

© Emerald Group Publishing Limited 3

The remainder of this paper is organized as follows. Second section provides an outline of several well-known algorithm

explanation methods. Third section describes our approach and provides its most important features and implementation

aspects. Authoring algorithm explanations and learning tasks are briefly exemplified in fourth section. Lastly, fifth section

concludes the paper and highlights our future work.

Explanation Methods
By an algorithm explanation system we mean a system designed to teach algorithms using multimedia that includes but is not

limited to graphics and animation. There are various existing approaches to explain algorithms. All approaches including

visualization, abstraction, constructivism and hypermedia have their specific advantages and problems. These approaches are

briefly described in the following paragraphs.

Visualization Techniques. Static visualizations (such as flowcharts) and dynamic Animations of Algorithms (AAs) are the

most popular way to explain their design and behaviour. As we mentioned above, this and many other existing algorithm

animation systems resemble visual debuggers. The runtime interpretation requires specific input data and cannot consider all

possible inputs and often suffers from the lack of focus on relevant data (Braune andWilhelm, 2000). One particular problem

with the dynamic execution of the algorithm is that the user has to remember the “previous state”. Multiple views showing

algorithm states are used to avoid forcing the viewer to remember the previous states, see (Biermann and Cole, 1999). The

JHAV´E system (Naps, 2005) is a support environment for a variety of available AA systems. It provides several interaction

support tools, such as input generators, stop-and-think questions, VCR controls, etc.

Abstraction. Algorithms represent abstract processes but this aspect is rarely considered. One approach presented by Wilhelm

(Wilhelm et al, 2002) uses a static source code analysis to abstractly execute the algorithm on “all possible sets of input data”,

and visualize invariants. An extension of this approach was exemplified for binary tree algorithms, see (Johannes et al., 2005).

The idea of using multiple levels of abstraction is supported by Petre et al. (1998b) who claim that in general it is hard to

determine a single suitable level of abstraction. Their research has shown that if the presentation is designed to highlight some

kind of information, then it is likely to obscure other kinds. In our approach, each level of abstraction is used to highlight a single

kind of information, for example invariants. So, the learner can focus on this kind of information.

The abstract model of the algorithm often uses pseudocode and it includes the high-level abstract data structures and

operations. These operations are designed so that they can be directly mapped to most procedural and object-oriented

programming languages. Using pseudocode, the algorithm can be studied independently of any programming language, see

(Fleischer and Kucera, 2002; Naps, 2005). The pseudocode may have an additional visual representation which exposes its

properties, in particular its invariants.

Concept Keyboards. Baloian et al. (2005) suggested using so-called concept keyboards (CKs) in order to explore data

structures and to execute the methods of an algorithm. Each key of a CK is mapped to the execution of an existing method

available in the implementation of the input algorithm. Based on the offered keys, the user can trigger more complex or abstract

operations. The approach does not focus on visualizations themselves: Visualizations or other media (sound or movies) are to

only reflect the users’ attempts at algorithms and data structures. Several evaluations show that the active use of CKs leads to a

better understanding of how algorithms work. Our approach has some similarities with algorithm visualization using CKs.

Hypermedia including visualization is used in our system to reflect the current information. The main difference is that we use a

flexible graph structure for an algorithm to describe operations and their dependencies.

Constructivism. The constructivist approach is based on the idea that the knowledge has to generate itself in the learner’s

mind. Therefore, knowledge cannot be transferred in a traditional way, e.g., by instruction. Within the moderate constructivism,

the teacher, the expert and the system are not allowed to manipulate the learner’s construction process but they can offer help

and coach their individual construction processes. Therefore, a goal of the moderate constructivism is to build learning

© Emerald Group Publishing Limited 4

environments that give learners the possibility to generate their own knowledge constructs. One possibility to reach this goal in

the context of learning algorithms is to use compiler generation techniques to generate interactive algorithm animations from

specifications, see (Kerren, 2004a, b).

Constructivism principles are used in active learning (Hundhausen et al., 2002) and this style of learning includes various

kinds of interactions with the learner. For example, students are able to use their own input data sets; use a do-it-yourself mode

and predict the next step of the algorithm, or determine the essential algorithm properties. Enhancing this idea, algorithm

explanations should not be prepared by experts; instead they should be prepared by learners themselves. Additionally, they

should support programming the target algorithm, using a standard programming language. This ability is missing from all

existing systems, but in our opinion it is absolutely essential.

Hypermedia. Development of hypermedia environments to provide knowledge and context to explain algorithms is a

relative new research area. The most notable example of this approach is HalVis, see (Hansen et al., 2002), which showed the

advantage of using hypermedia over using just animations. The authors argue that an algorithm is a process that is both abstract

and dynamic, and a system designed to explain algorithms should emulate both these features. Since SHALEX extends this

work, we briefly summarize several most important features of HalVis: support for enhanced learning with interactive examples

which helps learners to understand what the algorithm is doing and why; support for active learning by providing various kinds

of questions (note that HalVis does not evaluate learner’s answers); hyperlinks that help the learner to move between various

kinds of descriptions, e.g., text and animations; and finally the analogical animation, including both, micro and

macro-animations.

Although HalVis is a very useful system and is one of the few systems that provide hypermedia, it has several serious

limitations. For example, HalVis only allows the users to learn in one direction using a top-down approach, which does not

always reflect the structure of the algorithm and is not adaptive. Additionally, it supports abstractions, but only for

micro/macro-level animations.

Another algorithm animation system, called Ganimal (Diehl and Kerren, 2002; Ganimal, 2007), supports hypermedia as

follows: All algorithms are implemented in an algorithm animation specification language Ganila. Ganila offers a set of control

structures, such as the possibility to annotate the statements of the underlying algorithm with URLs. Ganila programs are

translated into Java and executed within an own runtime system for animation. If the system performs an annotated statement

then a HTML-View is opened. This view can interpret pure HTML code, show images, foreign Java applets, Flash animations,

etc. to support the learning process. Furthermore, it is possible to play sound if a special program point is executed. Ganimal

does not support abstraction levels or learner evaluations, but it is a powerful system to produce stand-alone hypermedia

animations.

Structured Hypermedia Algorithm Explanation
This section discusses our algorithm explanation system that includes a hypermedia environment providing links between

various kinds of multimedia. Our system, called SHALEX (SHALEX, 2007), aims to address most of the aforementioned

problems of systems described in the first section. The most novel property of SHALEX, which makes it possible to reach this

ambitious goal, is that it reflects the structure of an algorithm, defined as digraph of abstractions. Thus, it is possible to support

several levels of abstractions which help the learner to understand basic properties of the algorithms as well as to recognize

good implementation strategies.

© Emerald Group Publishing Limited 5

Concepts and Features

A major weakness of many existing systems is that they do not adapt to the learner’s behaviour. Therefore, a good student

may be bored while a novice student may be overwhelmed. SHALEX includes a learner model to provide spatial and temporal

links, and to support evaluations and adaptations. In this context, the system’s users can play one of the following four roles:

• learners (students), who study algorithms;

• authors, who are responsible for tasks such as creating algorithm explanations, various lessons, or assigning evaluations;

• administrators, who are responsible for tasks such as maintaining user accounts and their roles;

• algorithm administrators, who are responsible for tasks such as group management of users assigned to study specific

algorithms, management of algorithm explanations, including log information.

SHALEX supports many algorithms; explanations of which are created by various authors. To support this, we designed a

taxonomy of explanations which has a tree-like structure. Non-leaf nodes of the taxonomy represent concepts, such as “Iterative

Algorithms” (the root represents all algorithms). Leaves represent explanations of specific algorithms, created by specific

authors, for example “John Doe: Merge Sort”. The author who creates an explanation of a new algorithm specifies where in the

taxonomy hierarchy this explanation will be placed, see Figure 5 (upper screenshot).

Structured Hypermedia and Abstraction Levels. In our approach, operations are provided in a textual form, but there is

also a hyperlinked visual description used to help the learner understand basic properties of an algorithm, for example

algorithm invariants. Each operation is either implemented in an abstraction at the lower level, or it is a primitive operation.

This is a generalization of micro/macrolevel animations used in HalVis (Hansen et al., 2002) which will allow the novel mode

of studying unavailable in any other visualization system: an algorithm may be studied top-down, bottom-up, or using a mix of

the two (for more details see below).

We define the algorithm structure as a hierarchical Abstract Algorithm Model (AAM) which is a directed acyclic graph with

nodes representing abstractions and directed edges representing operation dependencies. Each abstraction is designed to focus

on a single operation used directly or indirectly in the algorithm, i.e., it explains a single operation op and consists of a textual

representation and a visual representation. The textual representation includes, among other things, an Abstract Data Type

(ADT) that gives a high-level view of generic data structures and operations.

Let’s assume that f is an operation. The abstraction that explains f, abst(f) is a pair (ADT, repr(f)), where ADT consists of

data types and primitive operations, see Figure 1. There is a directed edge from the abstraction abst(f) to an abstraction abst(g)

if g is one of the primitive operations from the ADT abst(f). Thus, a successor abstraction provides a partial implementation of

the operation from the predecessor abstraction. Typically, there are only few operations from any abstraction’s ADT that are

implemented in a successor of this abstraction; others are considered primitive operations. An AAM of an algorithm f is a graph

sourced at abst(f).

Fig. 1. Abstraction node of the AAM.

To build an algorithm explanation, we construct an AAM with a sufficient number of levels so that the learner is able to

understand how and why the algorithm works. In particular, the learner can form and justify invariants of the algorithm. Let’s

© Emerald Group Publishing Limited 6

consider the Insertion Sort algorithm (Aho et al., 1983) as an example. Each iteration of this algorithm removes an element

from the input data, inserting it at the correct position in the already sorted list until no elements are left in the input. Insertion

Sort can be implemented using operations from two ADTs: the Insertion ADT provides generic operations, such as insert and

the primitive operation swap; the Insert ADT provides only primitive operations, like last that returns the last element of a

sequence etc. The AAM for this algorithm forms a tree of abstractions rooted at abst(insertion), shown in Figure 2. Various

examples of abstractions and algorithm explanations are provided in (Müldner, 2003; Müldner and Shakshuki, 2004; Müldner

et al., 2004, 2005).

Fig. 2. An AAM for Insertion Sort.

Visualization. Associated visual representation may be used by the learner to help him or her understand the basic properties

of this abstraction, such as invariants. It is possible to embed any web-viewable animations built by AA systems, such as

Ganimal (Ganimal, 2007; Diehl et al., 2002; Diehl and Kerren, 2002), Animal (Roßling and Freisleben, 2002), or JSamba

(JSamba, 2007), as well as other formats, for example Marcomedia Flash (Macromedia, 2007) visualizations, animated GIFs,

sound files, etc. As an example, Figure 3 shows a Flash visualization of the insert() function of the Insertion Sort algorithm.

Additional hyperlinks provide a description of fundamental concepts and an intuitive analogy, similar to HalVis.

Fig. 3. Visualization of the insert of Insertion Sort.

Easy Language Transfer. SHALEX provides the intermediate representation of all AAM’s primitive operations, called an

Abstract Implementation Model (AIM), see also Figure 1. To implement the algorithm in a specific programming language, the

learner has to map to the selected language all primitive operations that do not have implementations in the AAM. The

representations in AIM are generic in that they are not using any specific programming language; instead they use high-level

concepts that can be mapped to many procedural programming languages.

Time Complexity. Explanation of algorithm complexity is one of the most difficult goals of algorithm visualization, because it

© Emerald Group Publishing Limited 7

requires mathematical proofs that are hard to visualize. The only attempt in this direction, to our knowledge, is described in

(Pape and Schmitt, 1997). The current version of SHALEX includes three kinds of tools designed to help the learner to derive

the complexity of the algorithm being studied. In the first tool, based on (Horstmann, 2001), the learner can experiment with

various data sizes and plot a function that approximates the time spent on execution with these data. The second tool, based on

(Goodrich and Tamassia, 2001), provides visualization that helps to carry out time analysis of the algorithm. Finally, the third

tool asks learners various questions regarding the time complexity of the algorithm being studied and evaluates their answers.
Learner and Author Models. SHALEX is an interactive system that allows the learner to select one of the available

algorithms to study. It uses a learner model to record learner activities. These interactions are vital to support active learning

(Hundhausen et al., 2002). SHALEX helps the learner not only to understand what the algorithm is doing but also how the

algorithm works; as well why the algorithm works (algorithm correctness).

In addition, it uses an author model to record decisions made by an author. For example, the author may decide to prepare,

for a single algorithm, various lessons with different evaluations, and various AAM trees providing more or fewer abstractions.

Authors’ responsibilities include selecting tools to keep track of the learner performance. Instead of fixing a single tool such as

asking a learner questions, SHALEX provides several tools including traditional tools, such as measuring the time spent on

studying specific issues and comparing this time with author-specifies soft and hard deadlines, or keeping track of the

percentage of questions that are correct answered by learner. More innovative tools supported by SHALEX include keeping

track of user activities, such as selecting menu items, entering text fields, etc. The author then selects a specific tracking tool,

and then decides on the adaptivity of the system. For example, the author model may also include assignments of various skill

levels to the learner. If this is the case, then there will be two types of evaluation; to decide whether the learner’s skill level

should be changed, and to decide whether the learner has successfully learned the operation in question.

Additionally, our system has built-in features that help to evaluate the effectiveness of studying algorithms using this system.

To compare the effectiveness of two different lessons for the same algorithm, the administrator may create two disjoint groups

of students, and assign a different lesson to each group (a single algorithm may have one or more lessons, where two lessons

may vary by the depth of their explanations, level of evaluation, etc.).

Authoring. The process of creating an algorithm explanation is supported by various tools, such as a library of existing

lessons, and descriptions of ADTs. The author may fetch an existing item and adjust to her or his needs. A novel and essential

feature of SHALEX is that it allows the author or the algorithm administrator to assign different modes of learning an algorithm:

top-down, bottom-up and learnerselected. In top-down learning, the learner studies the textual and optionally visual

representation of the source node (i.e., the most abstract operation) of the AAM at first. Then, the learner studies all successor

nodes and so on. The bottom-up learning approach is performed in an opposite direction, i.e., starting from leaves of the AAM.

The learner-selected mode needs a more careful description. For any operation op that appears in the operation currently

focused on, the learner may select op and request one of the following: help, taking a test (if the author decided to include

testing), or explanation of this operation. In the first case, SHALEX provides a context-sensitive help. Specifically, based on the

information available in the learner model, SHALEX provides a fundamental help (showing basic concepts), algorithm-specific

help, or practice-oriented help (if the learner model indicates that the learner understood the algorithm but she or he had

difficulties with problems that require manual simulation of this algorithm). In the second case, the learner may be given a test,

and if the test is passed, the learner model will be updated. The author may specify that in order to complete studying the

algorithm, the learner has to complete all tests, using evaluations available in the author model.

Note that explanations can also be built by the learners, who are permitted to play the role of authors. This way one can test

and evaluate moderate constructivism ideas.

© Emerald Group Publishing Limited 8

Implementation

SHALEX is being implemented in Java and XML. We briefly discuss the implementation of the most important technologies

used in SHALEX: Java is used to implement the basic functionality and graphical user interfaces. With the help of XML, we

represent system data (such as all algorithms, all users, nodes of AAM for specific algorithms, etc.) as well as the author and

learner model. The information available to authors and/or learners can be rendered in a variety of ways, for example in HTML

or PDF. XML data are made persistent using a native XML database, eXist (eXist, 2007). When the learner requests the HTML

view of all algorithms available in SHALEX, then the XML data are translated to HTML using XSLT (Tidwell, 2001) and

displayed. The entire system has an open design, e.g., both models can be plugged into the system without changing the system’s

architecture. The current version of SHALEX is implemented as a client/server, multi-tier application. Users access the server

with any web browser, and the server is implemented using servlets, which create dynamic web pages for the clients and

communicate with the database tier. The implementation of SHALEX is an ongoing work.

Case Study: Insertion Sort
To exemplify the use of SHALEX on the basis of the different roles, we briefly highlight the most important steps in the

development of algorithm explanations, user management, and the most important task: learning algorithms. As an example of

an algorithm, we will use Insertion Sort again.

After the start of SHALEX, a login dialog appears. Here, the user has to authenticate and choose her/his assigned role, i.e.,

Administrator, Algorithm Administrator, Author, or Student. We begin with the description of some technical aspects.

Administrating

Administrators are responsible for maintaining user accounts and the user’s role, skill level (for students), or level of trust (for

non-students), see Figure 4. These are purely technical tasks and the administrator does not need to know anything about

algorithms. Using the Administrator Control Panel, with a single mouse-click one can add a new user and additional

information, such as email address, length of study, or course number.

Fig. 4. Administrator Control Panel and creation of a new user.

© Emerald Group Publishing Limited 9

The responsibility of Algorithm Administrators is much broader. Within the Algorithm Admin Control Panel (cp. Figure 5),

they can define and manage student groups (controls are located on tab 1 of the upper screenshot example), e.g., if there are two

parallel courses on algorithms or if one group should learn with visualizations using a top-down learning strategy and the other

group should learn without visualizations using a bottom-up learning strategy. Furthermore, they can watch and record learner

activities (tab 4) for evaluation purposes. Very important part of the algorithm administrator’s activity is the management of all

available algorithm explanations, i.e., different algorithms (tab 2, shown at the upper screenshot of Figure 5) as well as the

nodes of the AAMs (tab 3): For example, the algorithm administrator can assign specific algorithms to student groups based on

the algorithm taxonomy. Note that not all algorithms have to be publicly available. It is possible to hide some algorithms, e.g.,

for technical or didactical reasons. On the other hand, there is also taxonomy of all AAM nodes. Here, some basic concepts,

such as string manipulation related operations, can be found and published for common use of all authors. Selecting any

published algorithm, SHALEX opens an information window about this algorithm in which all important learning procedures

can be chosen including learning strategy (see below) and mode (top-down, bottom-up, or learner-selected (mixed)), cp. lower

screenshot of Figure 5.

Fig. 5. Algorithm Administrator Control Panel (only tab 2 is shown) with a pop-up window which contains information on a specific algorithm.

Authoring

For the preparation of an algorithm explanation, an author has to define an Abstract Algorithm Model for the algorithm to be

explained. Let us use the AAM displayed in Figure 2. To specify it in SHALEX, the user must login as Author. In the Author

Control Panel, he/she can define an AAM with the help of an easy to use point-and-click-interface, see Figure 6.

© Emerald Group Publishing Limited 10

Fig. 6. The three tabs of the Author Control Panel.

We explain the functionality in a top-down manner: The author can insert/edit nodes of the AAM at the first tab of the Author

Control Panel as well as algorithms (AAM trees) at the second tab. Nodes and trees can be specified individually and can be

published once they are completed. It is also possible to reuse public nodes/algorithms or to copy public nodes/algorithms for

own modifications. On the third tab, each algorithm can be annotated with a learning strategy which consists of none, one or

several subtrees of the AAM. So, the author can individually control the granularity of explanations. In our screenshot example

shown in Figure 6, two different strategies were defined: top-level learning of Insertion Sort and learning this algorithm by

watching all nodes of the AAM, called “Complete Insertion Sort”. For each algorithm, there is a hard time, specified by the

strategy definition as the total time to study the algorithm that cannot be exceeded. Then, for each part (node) in this algorithm,

there is a soft time; where the sum of all soft times is equal to the hard time. The learner is allowed to exceed a specific soft

time, but then she/he would have to make up the lost time when studying other parts. This feature is very helpful for evaluation

purposes.

All relevant information to edit/create a node can be entered into dialog boxes, as shown in Figure 7. Thus, pseudocode and

informal descriptions together with an ADT are used to define an abstraction of an operation. The screenshot shows the

definition of the insert node. This operation uses further four primitive operations:

• comp(T t1, T t2) – compares two elements of type T

• last(s) – returns the last element of a sequence s

• prev(current, s) – returns the element of the sequence s, preceding current

• swap(T t1, T t2) – swaps t1 and t2 of type T

© Emerald Group Publishing Limited 11

Fig. 7. Edit a node and new ADT.

They can be declared within the Insert ADT (Figure 7, below) together with required data structures: in our case, sequences

Seq<T> of ordered elements of type T. Based on this information, a possible pseudocode implementation of the insert

operation is given below:

void insert(Seq<T> s, int comp(T t1, T t2)) {

for(current = last(s); prev(current, s) != NULL; current = prev(current, s))

if(comp(current, prev(current, s)) < 0)

swap(current, prev(current, s))

else return;

}

Optionally, the author can indicate an appropriate visualization or the source of an interactive questionnaire that will be

displayed in separate windows if the learner studies this node at learning time. Figure 3 shows a simple example visualization

of the node of the insert operation.

After the specifications of individual nodes, the author can easily build up the entire AAM tree by a self-explanatory and

comfortable point-and-click-interface shown in Figure 8. In our running example, we have only two nodes: insertion that will

be the root of the tree and insert that will be its only child which is not primitive. Remember that the swap operation used by

insert was declared as primitive operation.

© Emerald Group Publishing Limited 12

Fig. 8. Dialog box for edit algorithms (AAMs).

If the AAM is ready, SHALEX supports the definition of one or more learning strategies for an algorithm. The correspondent

dialog box is displayed in Figure 9. In the center of the dialog box, the entire AAM tree is displayed using a standard explorer

layout for trees. Thus, single nodes or entire subtrees can be marked for consideration in the learning process of the students. It

is also possible to choose a hard time for studying the algorithm as described before.

Fig. 9. Define a learning strategy.

Learning

After login as Student, SHALEX offers a learning panel with assigned tasks, as shown in Figure 10. All tasks are itemized in

a task list. For example, if the student attends a course on algorithms then the task list could contain several learning tasks, such

as “Study Sorting Algorithms” or “Study Geometric Algorithms”. Thus, each task can imply one or several related algorithms.

In our running example, we only have the Insertion Sort algorithm. Choosing this example, the AAM tree and a brief

description of the selected algorithm is displayed on the right-hand side of the learning panel. Assume the author has chosen a

learning strategy for this student’s group that allows free learning and watching of all AAM nodes of the selected algorithm

(“Complete Insertion Sort”). In our example, this policy is symbolized by check marks at all nodes. Furthermore, the algorithm

was ranked as “Medium” by the author of this algorithm explanation. To reflect the current status of the algorithm, a status bar

shows how many nodes of the AAM have been successfully completed.

© Emerald Group Publishing Limited 13

If the student decides to study a specific algorithm, a new window with the current AAM appears, as shown in Figure 10.

Here, the student can select any node of the displayed AAM tree (recall that we are using “free view” rather than a more

restrictive strategy such as “top down”) and click on the “Study Selected Node” button for learning. Let us assume that the

insert node has been chosen. Then, a new panel appears, as shown in Figure 11.

This “Study Operation” panel contains all explanations and information provided by the author for the selected node. All

fields of this panel can contain hyperlinks to both external and internal sources. In this way, hypermedia can be effectively used

to explain single primitive operations or to substantiate details in the algorithm description. Visualization and a questionnaire

can be invoked by the student too, as described before and shown Figure 3.

Fig. 10. Student environment.

Fig. 11. Learning a specific operation.

© Emerald Group Publishing Limited 14

Conclusions and Future Work
This paper presented our proposed system for explaining algorithms, which is based on structured hypermedia approach. It

has been shown that the system has some fundamental advantages, including availability of studying an algorithm top-down,

bottom-up, or using a mix of the two; support for understanding invariants; building a learner model to provide spatial and

temporal links; and the use of XML to store information. We summarize our contributions in more detail in the following

subsection.

Contributions

In this paper, we presented a novel algorithm explanation system, whose most important features include

• active learning; students can:

- enter their own inputs; a do-it-yourself mode and predict the next step of the algorithm, or determine the essential

algorithm properties;

- develop their own algorithm explanations rather than use the existing explanations prepared by experts;

- use the pseudo-code available in the algorithm explanation to implement this algorithm in a selected programming

language;

• multiple levels of abstraction; each level has its own pseudo-code textual representation, visual representation which

exposes its properties (particular its invariants), and questions that help the learner to perform self-evaluation;

• internal graph representation of the explanation, which is transparent to the user and makes it possible to learn the

algorithm using one of three existing strategies: a top-down approach, a bottom-up approach, or a mix of both;

• support for hypermedia, which is not limited to graphics and animations, but also includes internal hyperlinks (pointing to

other parts of the related explanations) and external links to other websites (such as websites that provide relevant

definitions);

• internal messaging system that can be used to exchange information between various users;

• four different roles that can be played by users; including learners, authors (responsible for creating algorithm

explanations and various lessons), algorithm administrators (responsible for management of groups of users by assigning

them to study specific algorithms, etc.), and finally system administrators (responsible for maintaining user accounts, their

roles and maintaining groups of users);

• persistent storage that not only stores algorithm explanations but also the student model, which can be analyzed to provide

feedback, prepare reports showing the learners performance, and provide system adaptations (such as various kinds of

help);

• flexible implementation of the student model, which makes it possible to store in the model various kinds of information,

such as marks for answered questions or learners interactions with the system.

Future Work

The educational benefit of our approach has to be proven by accurate evaluation. The good results of several evaluations of

the related concept keyboard approach (Baloian et al., 2005) support our assumption that an empirical evaluation of SHALEX

will yield to good results.

The first versions of algorithm visualizations were implemented using Macromedia Flash (Macromedia, 2007). For the next

version, we are considering using HTML pages to display more complex and interactive visualizations (this follows the design

of Ganimal (Diehl and Kerren, 2002)). Additionally, some improvements related the GUI will be implemented, for example,

the AAM of an algorithm should be displayed as a real graph in the GUI and not as a tree.

© Emerald Group Publishing Limited 15

After using the results of the usability check to improve SHALEX and fix possible bugs, we will design a quantitative

evaluation with exercises for a performance test to compare SHALEX with other AA systems and/or the concept keyboard

approach. In order to make our system usable, we are also planning on performing evaluations in class with students from

computer science at various universities.

Acknowledgements
The first and the third authors work on this project with a partial support provided by a grant from the Natural Sciences and

Engineering Research Council of Canada (NSERC) and internal grants from the Teaching and Innovation fund, Acadia

University. The authors would like to thank two alumni Jodrey School of Computer Science for their contributions to this

project; Joe Merrill for his implementations in Macromedia Flash MX during the first stages of the project, and Brad Haughn

for his implementations of some parts of the proposed system.

References
Aho, A. V., Hopcroft, J. E., Ullman, J. D., (1983). Data Structures and Algorithms. Addison-Wesley.

Baloian, N., Middleton, C., Breuer, H., Luther, W., (2005), Algorithm Visualization Using Concept Keyboards. In: Proceedings of the ACM Symposium on

Software Visualization (SoftVis ’05), ACM, St. Louis, MO, USA, pp. 7–16.

Baumgartner, P., (1999), Evaluation of Media-based Learning (in German). In: Kindt, M. (Ed.), Projektevaluation in der Lehre – Multimedia an Hochschulen

zeigt Profil(e), Waxmann, M¨unster, pp. 61–97.

Biermann, H., Cole, R., November (1999), Comic Strips for Algorithm Visualization, Tech. Rep. 1999-778, NYU.

Braune, B., Wilhelm, R., (2000), Focusing in Algorithm Animation, IEEE Transactions on Visualization and Computer Graphics 6 (1), 1–7.

Brown, M. H., May (1988), Perspectives on Algorithm Animation. In: Proceedings of the ACM SIGCHI ’88 Conference on Human Factors in Computing

Systems, ACM, Washington D.C., pp. 33–38.

Cox, K. C., Roman, G.-C., Sep. (1992), Abstraction in Algorithm Animation, In: Proceedings of the 1992 IEEE Workshop on Visual Languages, IEEE, IEEE

Computer Society Press, Seattle, WA, pp. 18–24.

Diehl, S. (Ed.), (2002), Software Visualization, Vol. 2269 of LNCS State-of-the-Art Survey. Springer.

Diehl, S., G¨org, C., Kerren, A., (2002), Animating Algorithms Live and Post Mortem, In: Diehl, S. (Ed.), Software Visualization. Vol. 2269 of LNCS

Stateof-the-Art Survey. Springer, pp. 46–57.

Diehl, S., Kerren, A., Jun. (2002), Reification of Program Points for Visual Execution, In: Proceedings of the First IEEE International Workshop on Visualizing

Software for Understanding and Analysis (VisSoft ’02). IEEE, IEEE Computing Society Press, Paris, Frankreich, pp. 100–109.

Eades, P., Zhang, K. (Eds.), (1996), Software Visualization. World Scientific Pub., Singapore.

eXist, (2007), Open Source Native XML Database. http://exist.sourceforge.net/.

Fleischer, R., Kucera, L., (2002), Algorithm Animation for Teaching, In: Diehl, S. (Ed.), Software Visualization. Vol. 2269 of LNCS State-of-the-Art Survey.

Springer, pp. 113–128.

Ganimal, (2007), Project Homepage, http://www.cs.uni-sb.de/GANIMAL.

Gloor, P. A., Sep. (1992), AACE - Algorithm Animation for Computer Science Education, In: Proceedings of the 1992 IEEEWorkshop on Visual Languages.

IEEE, Seattle, WA, pp. 25–31.

Gloor, P. A., (1998a), Animated Algorithms, In: Stasko, J., Domingue, J., Brown, M. H., Price, B. A. (Eds.), Software Visualization: Programming as a

Multimedia Experience. MIT Press, Cambridge, MA, Ch. 27, pp. 409–416.

Gloor, P. A., (1998b), User Interface Issues for Algorithm Animation, In: Stasko, J., Domingue, J., Brown, M. H., Price, B. A. (Eds.), Software Visualization:

Programming as a Multimedia Experience. MIT Press, Cambridge, MA, Ch. 11, pp. 145–152.

Goodrich, M., Tamassia, R., (2001), Data Structures and Algorithms in Java, 2nd Edition. John Wiley & Sons.

Hansen, S. R., Narayanan, N. H., Hegarty, M., (2002), Designing educationally effective algorithm visualizations: Embedding analogies and animations in

hypermedia, Journal of Visual Languages and Computing 13 (3), 291–317.

© Emerald Group Publishing Limited 16

Horstmann, C., (2001), Big Java: Programming and Practice. John Wiley & Sons.

Hundhausen, C., Douglas, S., Stasko, J., (2002), A Meta-Study of Algorithm Visualization Effectiveness. Journal of Visual Languages and Computing 13 (3),

259–290.

Johannes, D., Seidel, R., Wilhelm, R., (2005), Algorithm Animation using Shape Analysis: Visualising Abstract Executions. In: Proceedings of the ACM

Symposium on Software Visualization (SoftVis ’05), ACM, St. Louis, MO, USA, pp. 17–26.

JSamba, (2007), Project Homepage. http://www-static.cc.gatech.edu/gvu/softviz/algoanim/jsamba/.

Kerren, A., (2004a), Generation as Method for Explorative Learning in Computer Science Education, In: Proceedings of the 9th Annual Conference on

Innovation and Technology in Computer Science Education (ITiCSE ’04), ACM, ACM Press, Leeds, UK, pp. 77–81.

Kerren, A., (2004b), Learning by Generation in Computer Science Education, Journal of Computer Science and Technology (JCS&T) 4 (2), 84–90.

Kerren, A., Müldner, T., Shakshuki, E., (2006), Novel Algorithm Explanation Techniques for Improving Algorithm Teaching, In: Proceedings of the 3rd ACM

Symposium on Software Visualization (SoftVis ’06). ACM Press, Brighton, UK, pp. 175–176.

Kerren, A., Stasko, J. T., (2002), Algorithm Animation – Chapter Introduction, In: Diehl, S. (Ed.), Software Visualization, Vol. 2269 of LNCS State-of-the-Art

Survey, Springer, pp. 1–15.

Macromedia, (2007), Flash. http://www.macromedia.com/software/flash/.

Müldner, T., (2003), An Algorithm for Explaining Algorithms, Tech. Rep. TR-2003-01, Jodrey School of Computer Science, Acadia University,

http://cs.acadiau.ca/technicalReports/.

Müldner, T., Shakshuki, E., (2004), On Visualization and Implementation of Algorithms, In: Proceedings of the 5th International Conference on Information

Technology Based Higher Education and Training (ITHET ’04), IEEE, IEEE Computer Society Press, Istanbul, Turkey, pp. 138–143.

Müldner, T., Shakshuki, E., Kerren, A., Shen, Z., Bai, X., (2005), Using Structured Hypermedia to Explain Algorithms, In: Proceedings of the 3rd IADIS

International Conference e-Society ’05. IADIS, Qawra, Malta, pp. 499–503.

Müldner, T., Shakshuki, E., Merill, J., (2004), Selecting Media for Explaining Algorithms, In: Proceedings of the AACE World Conference on Educational

Multimedia, Hypermedia and Telecommunications (EDMEDIA ’04), AACE, Lugano, Swizerland, pp. 2048–2053.

Naps, T. L., (2005), JAV´ E: Supporting Algorithm Animation, IEEE Computer Graphics and Applications 25 (5), 49–55.

Pape, C., Schmitt, P. H., (1997), Visualizations for Proof Presentation in Theoretical Computer Science Education, In: Halim, Z., Ottmann, T., Razak, Z. (Eds.),

Proceedings of International Conference on Computers in Education (ICCE ’97), AACE - Association for the Advancement of Computing in Education, pp.

229–236.

Petre, M., Baecker, R., Small, I., (1998a), An Introduction to Software Visualization, In: Stasko, J. T., Domingue, J., Brown, M. H., Price, B. A. (Eds.),

Software Visualization, MIT Press, pp. 3–26.

Petre, M., Blackwell, A. F., Green, T. R. G., (1998b), Cognitive Questions in Software Visualization, In: Stasko, J. T., Domingue, J., Brown, M. H., Price, B. A.

(Eds.), Software Visualization. MIT Press, pp. 453–480.

Price, B. A., Baecker, R., Small, I., (1993), A Principled Taxonomy of Software Visualization. Journal of Visual Languages and Computing 4 (3), 211–266.

Roßling, G., Freisleben, B., (2002), ANIMAL: A System for Supporting Multiple Roles in Algorithm Animation. Journal of Visual Languages and Computing

13 (3), 341–354.

Roßling, G., Naps, T., Hall, M., Karavirta, V., Kerren, A., Leska, C., Moreno, A., Oechsle, R., Rodger, S. H., Urquiza-Fuentes, J., Vel´azquez-Iturbide, J. A.,

(2006), Merging Interactive Visualizations with Hypertextbooks and Course Management. ACM SIGCSE Bulletin – inroads 38 (4), 166–181.

SHALEX, (2007), Project Homepage. http://cs.acadiau.ca/˜solid/ae.htm.

Stasko, J. T., Domingue, J., Brown, M. H., Price, B. A., (1998), Software Visualization, MIT Press.

Tidwell, D., (2001), XSLT, O’Reilly.

Wilhelm, R., M¨uldner, T., Seidel, R., (2002), Algorithm Explanation: Visualizing Abstract States and Invariants. In: Diehl, S. (Ed.), Software Visualization,

Vol. 2269 of LNCS State-of-the-Art Survey. Springer, pp. 381–394.

© Emerald Group Publishing Limited 17

Elhadi Shakshuki is an associate professor and he is currently the Graduate Program Coordinator in the Jodrey School of Computer Science

at Acadia University, Canada. He is the founder and the head of the Cooperative Intelligent Distributed Systems Group at the Computer

Science Department, Acadia University. He is the recipient of the prestigious Acadia University Alumni Excellence in Research Award in

2007. He manages several research projects in his research expertise in the area of intelligent agent technology and its applications.

Andreas Kerren is currently an Associate Professor in Computer Science at the School of Mathematics and Systems Engineering of Växjö

University, Sweden. He was involved in various successful research projects related to Computer Science Education, e.g., in the DFG project

"Generation of Interactive Multimedia Visualizations and Animations for Learning Software in Compiler Design". Dr. Kerren is a member of

several program and organizing committees. He has served as reviewer for several international journals and distinguished conferences. His

main research interests lie in the areas of Software Visualization, Information Visualization, Software Engineering, Computer Science

Education, Human-Computer Interaction, and Programming Languages.

Tomasz Müldner is a professor of computer science at Acadia University. He received his Ph.D. in mathematics from the Polish Academy of

Sciences in Warsaw, Poland, in 1975. He published several books and over 70 papers. He is the recipient of numerous teaching awards,

including the prestigious Acadia University Alumni Excellence in Teaching Award in 1996. His research interests include algorithm

explanation, website internationalization and security of XML.

