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The StaViCTA project is concerned with visualising the expression of stance
in written text, and is therefore dependent on components for stance de-
tection. These components are to (i) download and extract text from
any HTML page and segment it into sentences, (ii) classify each sentence
with respect to twelve di↵erent, notionally motivated, stance categories [3],
and (iii) provide a RESTful HTTP API for communication with the vi-
sualisation components. The stance categories are certainty, uncer-

tainty, contrast, recommendation, volition, prediction, agree-

ment, disagreement, tact, rudeness, hypotheticality, and source

of knowledge.
Since standard libraries (jusText, Flask1 and NLTK [1]) could be used

for (i) and (iii), most work was spent on constructing machine learning
classifiers (ii). These were trained on data that was created by manual text
annotation of political blogs.

The twelve categories are not trivial to determine by human annotators
(as shown by low inter-annotator agreement scores), and some of them occur
rarely in most types of text [2]. This indicates that large resources in the
form of annotated data would be required to train the classifiers, and for
this reason active learning was applied [8]. The unlabelled sample closest to
the separating hyperplane of a support vector machine was actively selected,
i.e., an approach which had previously been shown to reduce the amount
of training data required to detect similar categories [7]. The approach was
implemented with the MongoDB2 database and Scikit-learn’s SVC class [5].

An annotation tool, developed within StaViCTA [4], was used to manu-
ally categorise the actively selected sentences with respect to the categories
studied. In addition to this sentence-level annotation, the words that were
used for expressing the categories were also marked. These were first au-
tomatically pre-annotated using the PAL tool [6] and then imported into
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brat [9] and checked by an annotator. The word-level annotated data was
then used for training a Scikit-learn LogisticRegression classifier to perform
the stance-detection task (which in general led to better results than when
using the SVC classifier). The probability scores of the logistic regression
model could also be used to provide confidence estimates for the stance
classification.3
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