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Abstract

A tool that enables the use of active learn-
ing, as well as the incorporation of word
embeddings, was evaluated for its abil-
ity to decrease the training data set size
required for a named entity recognition
model. Uncertainty-based active learning
and the use of word embeddings led to very
large performance improvements on small
data sets for the entity categories PERSON
and LOCATION. In contrast, the embedding
features used were shown to be unsuitable
for detecting entities belonging to the OR-
GANISATION category. The tool was also
extended with functionality for visualising
the usefulness of the active learning process
and of the word embeddings used. The vi-
sualisations provided were able to indicate
the performance differences between the
entities, as well as differences with regards
to usefulness of the embedding features.

1 Introduction

To acquire large training data sets by the use of
low-cost crowdsourcing is not a universal solution
for all annotation tasks. The ethical aspect could
be one concern, as the concept of low-cost crowd
annotations implies low-paid annotators (Martin
et al.,, 2017). Other obstacles might be data pri-
vacy restrictions (e.g., when annotating clinical
health records), or a lack of specialised competence
among crowd workers, e.g., competence in the an-
notation task or in a specific language. Strategies
for facilitating annotation are therefore important,
also in the age of crowdsourcing.

A possible strategy for facilitating annotation is
to minimise the amount of manually annotated data
required, e.g., data required for the task of training
a machine learning model. This could be achieved
by (i) using active learning to actively select train-
ing samples useful to the model and (ii) training
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the model on information that has been derived in
an unsupervised fashion. There is a large body of
research that has shown the effectiveness of using
each one of these strategies individually, and there
are also annotation tools/annotation tool extensions
that incorporate these two strategies (Skeppstedt et
al., 2016; Kucher et al., 2017). However, to the best
of our knowledge, there are no studies that evaluate
the effectiveness of this combined data reducing
strategy provided by the tools. The first aim of
this study is therefore to evaluate the effectiveness
of one such tool, i.e., to evaluate whether using
the tool leads to the expected decrease in data size
required to train a machine learning model.

Also the annotation of a smaller data set can
however be a time-consuming, and potentially bor-
ing, task. Gamification of the task is one previously
explored strategy for solving this problem (Dumi-
trache et al., 2013; Venhuizen et al., 2013).

Another potential strategy for increasing the in-
trinsic motivation for the annotation task, is to
make the annotator aware of the usefulness of the
data that is being annotated. The second aim of
this study is to take a first step towards exploring
this strategy in the context of an active learning
process. We aim to provide a suggestion for a vi-
sualisation of how the increasingly larger training
data set, which results from the manual annotation
effort, changes the model that is trained on this
annotated data set. That is, a visualisation that has
the potential to increase the human understanding
of the active learning-based annotation process.

2 Background

The tool whose performance we have evaluated,
and whose active learning process we have visu-
alised, is the tool “PAL — a tool for Pre-annotation
and Active Learning” (Skeppstedt et al., 2016).
PAL is meant to be used as an extension to an-
other annotation tool, e.g., BRAT (Stenetorp et al.,
2012), for annotating data to be used for training
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a named entity recognition (NER) model. While
high performance is often reported for the NER
task, e.g., for newswire texts (Sang and Meulder,
2003), the task is more difficult for noisy texts
and when small training data sets are used. For in-
stance, the best system on the ACL 2015 Workshop
on Noisy User-generated Text achieved an F-score
of 0.74 for PERSON, 0.50 for COMPANY, and 0.66
for GEO-LOCATION when using a training set of
2,950 tweets (Baldwin et al., 2015; Yamada et al.,
2015).

PAL provides functionality for active data se-
lection, as well as for incorporating unsupervised
data in the form of word embeddings when training
the models that are used for active data selection.
The tool also offers annotation support in the form
of pre-annotations. This is achieved by repeatedly
retraining a NER model on the data that the anno-
tator produces in BRAT and on information incor-
porated from word embeddings. The trained model
can then be used for two purposes: (i) to actively
import new annotation data into BRAT, i.e., to ac-
tively select data useful for improving the model,
and (ii) to simplify the annotation by providing the
annotator with pre-annotations in BRAT format.
To allow the annotator to add, delete or change
the span length of pre-annotated entities — instead
of annotating from scratch — has been shown to
reduce annotation time (Lingren et al., 2014).

PAL could, for instance, be used according to
the annotation process suggested by Olsson (2008).
That is, to first annotate an actively selected sub-
set of a corpus to achieve a model that can per-
form pre-annotations with acceptable accuracy, and
thereafter use this model for providing the anno-
tator with pre-annotations when a larger corpus
is annotated. Such a corpus might, for instance,
be used for training a model that requires a large
training data set to perform well. The current study
focuses on the first part of such a use case, that is on
the process of actively selecting training samples
to achieve a model that recognises named entities
with acceptable performance.

2.1 Approaches for minimising training data

To use active learning, instead of a random sam-
pling of training data, has led to a reduction of the
number of samples needed to train classifiers to
recognise different entity types (Shen et al., 2004;
Tomanek et al., 2007). The technique builds on
the following idea: Data samples estimated to be
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useful to a machine learning model are actively se-
lected from a pool of unlabelled data. The selected
samples are presented to an annotator for manual
annotation, and the newly annotated data is then
added to the set of labelled data that is available
for training the model. This expanded training data
set is then used to retrain the model, which in turn
is applied in the next iteration in the process of
actively selecting data. The estimate of a sample’s
usefulness can, for instance, be based on the level
of disagreement among different classifiers (Ols-
son, 2008, pp. 25-29), or on properties specific to
the type of model used, e.g., a confidence measure
provided by the model (Settles, 2009).

The other technique included in PAL for reduc-
ing the training data size is to incorporate features
gathered in an unsupervised fashion, through the
use of text distributional properties of word types.
There is a large body of research that shows this
technique to be effective for named entity recogni-
tion, e.g., the use of features in the form of Brown
clusters (Miller et al., 2004) and more recently in
the form of different types of word vectors automat-
ically derived from large corpora (Sahlgren, 2006;
Mikolov et al., 2013). Word vectors have for in-
stance been incorporated in the feature set when
using conditional random fields classifiers (Turian
et al., 2010; Guo et al., 2014; Henriksson, 2015;
Copara et al., 2016), or used as input to different
types of neural network-based classifiers (Godin et
al., 2015; dos Santos and Guimaraes, 2015; Yang
et al., 2016; Lample et al., 2016; Reimers and
Gurevych, 2017). There is, however, less research
that investigates the effects of using the two strate-
gies of unsupervised features and active learning
in tandem; in particular their effects on small data
sets, i.e., the use case that we explore here.

2.2 Functionality of PAL

Each iteration in PAL is run in two steps. First,
data positioned in PAL’s “folder for labelled data”
is used for training a machine learning model;
a model which is then used for selecting new
data samples from PAL’s “folder for unlabelled
data.” The model also provides BRAT-format pre-
annotations for the selected data, enabling it to
be directly imported into BRAT (Figure 3b). In
the second step, which takes place after the data
has been manually annotated, the data annotated
in BRAT is moved into PAL’s “folder for labelled
data”, to enable the next active learning iteration.



A basic feature vector for training the model, x;,,
is constructed through representing each token by
a concatenation of (i) the one-hot encoding for the
token with (ii) the one-hot encoding for a config-
urable number of neighbours to the token.

The functionality of incorporating features de-
rived in an unsupervised fashion is provided in PAL
through an extension of the basic vector by a vector
derived from pre-trained word embeddings. This is
achieved by concatenating the basic feature vector
with the word embedding vector that represents the
token, as well as with the word embedding vectors
that represent the neighbours of the token.

Information from gazetteers or information on
which words were capitalised were not included in
the feature set, to focus the experiment on the ef-
fects of the different strategies compared. This also
makes the results somewhat more generalisable,
e.g., to entity types that are not typically capitalised
or for which gazetteers do not typically exist, or to
languages that do not use an initial capital letter as
a signal for names.

With the focus on making the data selection and
model training process as comprehensible as pos-
sible for a human, we used the main classification
method included in PAL, which is a token-level
logistic regression classifier. That is, a classifier
for which a human-interpretable confidence mea-
sure can be returned for each token in the pool of
unlabelled data. The output of this unstructured
predictor, is then post-processed into B/I-labels for
tokens classified as an entity.

The confidence is then used for carrying out un-
certainty sampling from the pool of unlabelled data
(Settles, 2009). More specifically, the measure used
is the difference in certainty level between the two
most probable classifications for each of the tokens
in the data pool. Given c;; as the most probable
classification and c; as the second most probable
classification for the observation x;,, the uncertainty
measure would be:

M, = P(cpi|xn) — P(cpa|xn) (D

The smaller M,,, the higher is the uncertainty of the
classifier and the higher is the sample ranked in the
active selection process (Schein and Ungar, 2007).

PAL represents each training sample by the low-
est M among the tokens it includes. For each
iteration in the active selection process, samples
that contain tokens with the lowest M-values are
thereby selected. To achieve a variation among the
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samples selected, PAL also imposes the constraint
of not allowing the selected texts to include the
same word twice, if this word is predicted by the
model to be included in a named entity.

PAL accesses embeddings through Gensim
(ﬁehﬁfck and Sojka, 2010) and uses Scikit-learn’s
(Pedregosa et al., 2011) logistic regression clas-
sifier with a regularisation strength determined
through cross-fold validation.

3 Method

The evaluation of PAL was carried out using the
Broad Twitter Corpus (Derczynski et al., 2016),
which consists of English tweets annotated for the
three entities PERSON, LOCATION, and ORGANI-
SATION. The corpus is sampled across different
regions, temporal periods, and from different types
of Twitter users, to ensure a large diversity of the
entities included. Each of the three entity types was
annotated separately.

We removed metadata in the form of hashtags
and usernames starting with @, to make the task
more similar to most previous NER tasks, where
entities are mentioned in a textual context. The
corpus is divided into six segments, each of them
with a different signifying property, e.g., tweets
from popular individuals, tweets from mainstream
news, or tweets focused on one specific event. For
performing the experiments we, however, sampled
randomly from the corpus (as described below),
without taking this structure into account.

3.1 Simulation of active learning

The active learning process in PAL was used in
simulated mode as follows: the machine learning
model was first trained on a small labelled data set
consisting of 200 randomly selected tweets, i.e., a
set representing an initial seed set. The task of the
active learning algorithm would then be to select
the most informative data points from the pool of
unlabelled data. In the experiment, the “pool of
unlabelled data” was simulated by the texts from
the pre-labelled tweets in the Broad Twitter Corpus,
and the corpus labels were used to simulate input
in the form of manual annotations performed by
the annotator.

For the experiment performed, we selected 20
tweets in each iteration. These 20 tweets and their
corresponding labels were thus added to the set of
labelled data, to simulate the process of them being
manually annotated. The model was, thereafter,



retrained, and a new iteration in the process of
actively selecting tweets was then carried out, until
the set of labelled data contained 1,000 tweets.

A context window of the two most immediate
neighbours was used, with a frequency cut-off of
three occurrences for a neighbour to be included.
Word embeddings from a word2vec skip-gram
model, which had been pre-trained by Godin et
al. (2015) on 400 million tweets, were used as un-
supervised features.

3.2 Evaluating the active learning simulation

The strategies used in PAL for decreasing the train-
ing data size required were compared to a baseline
strategy. A total of four different strategies were
thus evaluated for their performance on a small
training data set: (i) the baseline, with random data
selection and a basic feature vector, (ii) data selec-
tion through active learning and the basic feature
vector, (iii) random data selection and the feature
vector extended with word2vec features, and finally
(iv) data selection through active learning and the
feature vector extended with word2vec features.

4,000 tweets were randomly selected from the
Broad Twitter Corpus to simulate the pool of unla-
belled data, and 2,000 other tweets were randomly
selected to be used as evaluation data. From the
simulated pool of data were then 200 tweets ran-
domly selected to form the seed set.

Starting with this seed set, an evaluation was
carried out of the four different strategies investi-
gated. For one of the active learning strategies, the
basic feature vector was used, and for the other, the
word2vec extension. For every step in the itera-
tion, the performance of the model was evaluated
against the 2,000 tweets that formed the evaluation
data, i.e., after 20 new training data samples had
been actively added to the training data set.

For the two strategies that did not include ac-
tive learning, each iteration instead consisted of a
random selection of 20 new tweets from the simu-
lated data pool. A new model was trained on data
including these newly selected tweets, and then
evaluated against the 2,000 tweets in the evaluation
set. The same randomly selected data sets were
used both for the setting with word2vec features
and the setting without these features.

As results of the study were heavily dependent
on the random selection of a number of small data
sets, it was particularly important to make sure that
results achieved were not due to chance. The entire
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experiment was therefore repeated 10 times, each
time with a new random selection of data pool,
evaluation and seed set, as well as training data
for the strategies not using active data selection. A
separate experiment was carried out for each one of
the three entity types LOCATION, ORGANISATION
and PERSON, i.e., matching the manner in which
the evaluation corpus had been annotated. Entities
were represented by the BIO-encoding, and the
classifications were evaluated using the CoNLL
2000 NER script (Tjong Kim Sang and Buchholz,
2000).
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Figure 1: Average F-score for the ten experiment re-
runs. The error bars show the interval between the min-
imum and maximum of the F-scores measured, and the
x-axes show the number of training samples.

3.3 Visualising the active learning process

We extended PAL by enabling it to record statistics
for the pool of unlabelled data for each iteration
of active data selection. We also extended the tool
by adding a command which allows the user to
generate a visualisation of this recorded data. The
visualisation aimed to increase the human under-
standing of the active learning and classifier train-
ing by (i) showing why a particular set of samples
are chosen for manual annotation in each iteration,
(i1) showing an indication of the usefulness of the
embedding features used, through visualising how
clusters formed by the embeddings correspond to
the entity categories investigated, and (iii) showing
how the classification uncertainty for the pool of
unlabelled data changes when more data is anno-
tated and used for training the model.
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Figure 2: (a-f) Six subplots, two for each of the three entity categories. (g) The left-hand column: The model’s
uncertainty for classifying tokens in the pool of unlabelled data when 500 samples have been removed from the
pool, labelled, and then used as training data for the model. (h) The right-hand column: Same as g, but with a
training data size of 7,000 samples. (i) A t-SNE plot is displayed to the left in each of the six subplots, showing
word embeddings that correspond to words included in the pool of unlabelled data. Words that occur in similar con-
texts are positioned close to each other in the plot. (j) The 20 most uncertain tokens in the pool of unlabelled data,
together with a bar chart showing their level of uncertainty, is displayed to the right in each subplot. That is, the 20
tokens for which the machine learning model, trained on the set of labelled data available, is most uncertain. (The
two closest neighbouring tokens are shown in parenthesis.) (k-I) The colour red is used for signifying that a token
has been classified by the model as belonging to the entity category in question (i.e., classified as a LOCATION,
ORGANISATION or PERSON entity). (m-n) The colour blue is used for signifying that a token is not classified as
belonging to the entity category in question. (0-p) The t-SNE plot and the bar chart use the same colour-coding for
signifying the output of the machine learning model. The larger the uncertainty with which a token is classified by
the model, the darker (i.e., closer to black) is the red or blue in which it is displayed. (q) In contrast, tokens that
the model classifies with a low uncertainty are displayed in a bright colour with low saturation. (r) The numbers
can be used for locating the position in the t-SNE plot for those among the most uncertain tokens that occurred at
least twice in the pool of unlabelled data. (s) Bar chart indicating mean model uncertainty for all words left in the
pool of unlabelled data. (t) Bar chart indicating the proportion of incorrectly classified tokens when conducting
cross-fold validation on the training set.

The advantage of applying the functionality in ~ based on their most uncertain token, is that the se-
PAL that uses a token-level, logistic regression clas-  lection process is easily explainable. That is, the
sifier for the data selection, and that selects samples  first of the visualisation goals can be met by con-
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veying a list of these tokens, for which the model
was most uncertain, together with the model’s clas-
sification uncertainty for these tokens.

The second visualisation goal can be met by plot-
ting a t-distributed stochastic neighbour embedding
plot, t-SNE (van der Maaten and Hinton, 2008), of
the word embeddings that were used as features.
Plotted word embeddings can then be colour-coded
according to how the word which they represent
most often is classified. Thereby, a comparison
between classifications by the trained model and
clusters of word embeddings, as shown by the t-
SNE plot, can be carried out.

To show the classification uncertainty of the
most uncertain tokens also helps meeting the third
visualisation goal. That is, changes in uncertainty
for these most uncertain tokens indicate changes
in model performance when the training data size
increases. In addition, the colour-coding of the t-
SNE plot can also be used for indicating whether
the classification uncertainty for the tokens in the
pool of unlabelled data changes when more data is
labelled and used as training data.

3.4 Visualisations for another corpus

To verify that the visualisation also functions on an-
other corpus than the English corpus that we used
during development and for simulation of the pro-
cess, we performed a small annotation experiment
on a corpus of Japanese microblogs.!

As white space is not normally used in Japanese
text, we first performed a pre-processing using
the MeCab tool (Kudo, 2006). That is, the text
segments generated by MeCab was used, and
white space was inserted between these segments.
Thereby, the white space-based tokenisation in-
cluded in Scikit-learn could be used as-is. As un-
supervised features, we used word embedding vec-
tors from a word2vec model that had been trained
on Japanese texts, which had been segmented by
MeCab and merged with the help of a dictionary?.

For this corpus, we did not perform a simulation,
but instead applied PAL for the authentic use case
of annotating raw text data. That is, we used the
facilities of active learning and pre-annotation that
are available in PAL for annotating text, and gen-

Thttp://www.cs.cmu.edu/ lingwang/microtopia/#twittergold
Microblogs collected with the criterium that they should
contain the same content written in Japanese and in English
(Ling et al., 2014), from which we used the Japanese parts.

Zhttps://github.com/shiroyagicorp/
japanese-word2vec-model-builder
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erated a visualisation after each iteration. We im-
ported the pre-annotations generated by PAL into
the BRAT annotation tool, as shown in Figure 3, to
modify or delete incorrect annotations and to add
omitted ones. We used annotation guidelines for
entity detection and tracking (EDT)3.

4 Results

Evaluation results in the form of an F-score mea-
surement when evaluating against an external evalu-
ation set are shown in Figure 1, while Figures 2 and
3 show the output of the proposed visualisations
for the active learning process.

4.1 Evaluation results

The main lines in Figure 1 show the average F-
scores for the ten re-runs for each training data size
included in the experiment. The error bars show
the minimum and maximum F-scores for the ten
re-runs, i.e., giving an indication of the variation in
the results achieved.

For the entity categories LOCATION and PER-
SON, average F-scores for the four different strate-
gies produce four well-separated lines. Results are
often separated, or close to separated, also when
taking the lowest/highest value measured for the
ten folds into account. Active data selection gives
better results than random selection, and incorporat-
ing unsupervised features gives better results than
not using them. The incorporation of unsupervised
features is a more useful strategy than active data
selection, and, more importantly, combining the
two strategies is the overall most useful method.

Figure 1 further shows that while active learning
was useful also for the category ORGANISATION,
the use of word embeddings instead had a small
negative impact on this category for a data set con-
taining more than 600 samples.

4.2 Visualisation output

The visualisation functionality, with which we ex-
tended the PAL tool in this study, provides one
visualisation of the unlabelled data pool for each
iteration in the active learning process. The left-
hand column in Figure 2 shows three visualisations,
one for each of the three entity categories investi-
gated. Each of them was generated in an active
learning iteration when the training data set con-
tained 500 samples. The right-hand column in the

3www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/
english-edt-v4.2.6.pdf



figure shows visualisations for the three categories,
that instead were generated when the training data
set contained 1,000 data samples. All six subplots
visualise the state of the pool when using active
learning and the word2vec features.

Each subplot shows the state of the pool of un-
labelled data. That is, each subplot contains an
uncertainty colour-coded t-SNE visualisation of
word embeddings that correspond to tokens present
in the data pool, as well as a bar chart display-
ing the classification uncertainty for the 20 most
uncertain tokens in the pool. Red colours in the
t-SNE plot and the bar chart signify tokens that the
model, trained on the currently available labelled
data, classifies as belonging to the entity category
in question, whereas blue colours indicate that this
model classifies the token as outside of an entity.
Darker colours in the t-SNE plot and the bar chart
signify higher uncertainty for the classification.

In particular, the colours and lengths of the bars
for PERSON and LOCATION show that there is a
higher uncertainty for a model trained on 500 data
samples than for a model trained on 1,000 samples.
Also the colour coding of the t-SNE plot gives a
slight indication of this difference in uncertainty.
In contrast, for the ORGANISATION entity, there
is a large uncertainty also for a training data set
containing 1,000 samples. The bars that indicate
mean uncertainty left in the data pool corroborate
this difference.

The visualised differences in model uncertainty
for different entities correspond to differences
found in the evaluations against the gold standard,
as shown in Figure 1. That is, the model trained
to recognise ORGANISATION, which is visualised
as uncertain, still yields a very low F-score when
trained on 1,000 training samples. Similarly, that
better results were achieved for PERSON and LO-
CATION when evaluating against the gold standard,
is reflected by a visualisation that indicates a lower
uncertainty for models trained on 1,000 training
samples to detect these entity categories.

Conversely, the percentage of incorrect classifi-
cations increases when the training data set for the
entity LOCATION increases. Thereby, the standard
measurement, in the form of incorrect classifica-
tions when performing a cross-validation on the
labelled data, fails to indicate changes in model
performance.*

4This measure is equivalent to inverse accuracy. Inverse
accuracy is used to match the uncertainty measure used, i.e.,
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The spatial information in the t-SNE plot of word
embeddings correspond well to differences with
regards to the usefulness of embedding features
between the three entity categories evaluated. That
is, tokens classified as belonging to the categories
PERSON and LOCATION, for which word embed-
dings were useful, are shown as clusters of red dots
in the t-SNE plots. In contrast, tokens classified
as belonging to ORGANISATION, for which word
embeddings were shown not to be useful, mainly
occur as scattered dots in the plot.

The output of experiments on the Japanese data,
for a model trained on 138 manually labelled mi-
croblogs, is shown in Figure 3. Figure 3a visualises
the state of the pool with regards to the LOCATION
category, and Figure 3b shows pre-annotations re-
sulting from this model.’

LOC model trained on 138 samples

a Classification uncertainty for the
most uncertain tokens in data pool:

—
—
—
3 3:99%  e— Fiip
! 5:99%  e—— #®
e L e— vy
. 7:99%  — .
. 8:99%  n— =]
9:99%  n— oy
10: 98% ——— AfE
11:98% e— &
aoe 12:98% —— DHR
PRL TR SR T 13:98% — s
el RO 14:97% ee—— >hd
o 15:97% — P
’ Y 16:97% — x
. 10 17:97% —— I3
. ’ 18:97% — BT
2 I 19:97% e—— BF
.12 i1 20:97% e——— JeimE
4 Data pool 19% mean uncertainty left
Red: Tokens classified as LOC
Blue: Other tokens.
I
b
———
=4 BEIC{T> TE XY
2H. SHIFEZEIC 1T 9,
—
SHE & RYT (T CED U &T
Bz BHEZE R RITa7 I3 L &

Figure 3: (a) The state for the LOCATION entity in the
pool of unlabelled data, when the NER model has been
trained on 138 manually labelled Japanese microblogs.
Two potential entity clusters are shown in the t-SNE
plot (close to 8, Turkey, and 20, Hokkaido). Which
iteration is shown can be changed through the slider
provided. (b) Pre-annotations for two samples selected
for manual annotation, as they contain the two most
uncertain tokens in the data pool, i.e., the tokens shown
as the first two elements in the list of uncertain tokens.

the aim for both should be to reach 0%.

5The code for PAL, as well as for the experiments re-
ported here, can be found at: https://github.com/mariask2/
PAL- A-tool-for-Pre-annotation-and- Active-Learning. There,
a link can also be found to a video showing how the state of
the pool changes with an increasing training data size.



5 Discussion

Results for the LOCATION and PERSON entities
yield that the combined functionality of active
learning and incorporation of unsupervised features
has the potential to lead to large increases in re-
sults on small data sets. This, in turn, shows that
these techniques form useful components for the
use case on which we focused here, i.e., to achieve
models that can give acceptable performance on
small data sets and that can be applied for provid-
ing pre-annotations when annotating larger data
sets.

The categories LOCATION and PERSON seem
to be relatively coherent in terms of the contexts
in which they occur, as shown by the large model
performance increases achieved when word em-
bedding features were incorporated. In contrast,
that slightly better results were achieved for OR-
GANISATION without word embedding features,
indicates that entities belonging to this category
occur in semantically diverse contexts.

These differences in context coherence between
different entity categories were also shown by the t-
SNE plot functionality, which we provided to meet
one of the visualisation goals of the PAL tool exten-
sion of this study, i.e., the goal of showing whether
the word embeddings used as features formed clus-
ters corresponding to manually annotated entity
categories. Thereby, the annotator is provided with
a possibility to estimate the effect of these word
embedding features in the active learning process.

The t-SNE plot and the bar charts of the extended
version of the PAL tool also meet the visualisation
goals of showing why a particular set of samples
were chosen for annotation, and of showing how
the increased size of the training data set affects the
performance of the trained model. An increased
training data size led to that two of the classifiers
achieved an F-score that might be high enough
to be acceptable for pre-annotation, while the F-
score remained low for the ORGANISATION cate-
gory, also when the data size was increased. These
differences were reflected in the visualisations of
the effects of the increased training data size.

We believe that visualisations that aim to in-
crease the human understanding of the active learn-
ing process and of the features used, and that show
how the state of the data pool changes as more
data is manually annotated, have the potential to
increase the intrinsic motivation for the annota-
tion task. Future work will therefore include user
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studies to determine how annotators perceive these
visualisations that were added to the PAL tool, and
how the visualisations affect the motivation for the
annotation work. Such user studies should also in-
clude investigations of how the performance level
of the machine learning model correlates with the
perceived usefulness of the pre-annotations pro-
vided by the model.

6 Conclusion

We evaluated the ability of the PAL tool to reduce
the training data size required through the use of
active selection of data and through the incorpora-
tion of unsupervised features in the form of word
embeddings. Results achieved for the categories
LOCATION and PERSON showed that the combined
functionality of active learning and incorporation of
word embeddings has the potential to lead to large
increases in results on small data sets. In contrast,
word embeddings did not lead to any improvements
in the performance for detecting the ORGANISA-
TION entity, and low F-scores were achieved for
this entity category, also when 1,000 samples were
used for training the model.

The PAL tool was also extended with visualisa-
tion functionality, with the aim of increasing the
human understanding of the active learning pro-
cess and of the features used. The visualisations
provided were able to indicate performance differ-
ences between the entities, as well as differences
with regards to the usefulness of the embedding
features. That is, the same differences that were
shown in the formal evaluations against the gold
standard annotations.

We hope that this study will inspire annotation
projects to facilitate the annotation process by prac-
tically applying the methods that we have evaluated
here. In particular, we hope that the application of
PAL, and other tools that provide annotation sup-
port, will lead to that more annotation projects are
being conducted on corpora for which crowdsourc-
ing is not appropriate. For instance, corpora for
specialised domains or smaller languages.
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