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Abstract—Assessing software quality, in general, is hard; each
metric has a different interpretation, scale, range of values, or
measurement method. Combining these metrics automatically is
especially difficult, because they measure different aspects of
software quality, and creating a single global final quality score
limits the evaluation of the specific quality aspects and trade-offs
that exist when looking at different metrics. We present a way to
visualize multiple aspects of software quality. In general, software
quality can be decomposed hierarchically into characteristics,
which can be assessed by various direct and indirect metrics.
These characteristics are then combined and aggregated to assess
the quality of the software system as a whole. We introduce an
approach for quality assessment based on joint distributions of
metrics values. Visualizations of these distributions allow users to
explore and compare the quality metrics of software systems and
their artifacts, and to detect patterns, correlations, and anomalies.
Furthermore, it is possible to identify common properties and
flaws, as our visualization approach provides rich interactions
for visual queries to the quality models’ multivariate data. We
evaluate our approach in two use cases based on: 30 real-world
technical documentation projects with 20,000 XML documents,
and an open source project written in Java with 1000 classes.
Our results show that the proposed approach allows an analyst
to detect possible causes of bad or good quality.
Index Terms—hierarchical data exploration, multivariate data
visualization, joint probabilities, t-SNE, data abstraction

I. INTRODUCTION

Quality maintenance of software is essential for a sustained
development life cycle. While automated testing and continu-
ous integration ascertain quality to some degree, not all such
methods are of automated nature. Decisions, such as which
components of the artifact shall be refactored preferably next,
are hardly obtained automatically and do require a wholly
analysis. It is therefore of great help to an analyst to examine
the entirety of a software artifact, regardless of its size.

Software systems can be decomposed into logical compo-
nents or subsystems at different levels to form a hierarchy,
and multiple software characteristics can be measured at any
given level. Most software quality models are also organized
in a hierarchical structure, consisting of quality characteristics
and the metrics associated with them. Although such quality
models provide a basic understanding of what data to collect
and which metrics to use, it is not clear how the metrics
should be combined to a provide a single score. Metrics have
different units, scale types, and distributions of values, which

makes quality assessment challenging. Well-known aggrega-
tion methods, such as mean and median, do not capture all
aspects of a distribution which may be relevant to users.

Additionally, the set of all metrics and characteristics that
can be extracted from software systems consist on multivariate
data that carry information about source code and highlight
different aspects of software quality [1]. Hence, to get an
overview of the behavior of an entire system or a specific
artifact one needs to combine and compare different mea-
surements, effectively building a multivariate representation of
software artifacts that conforms to the quality model at hand.
Visualization techniques potentially allow the human brain
to study multiple aspects of complex multivariate problems
in parallel [2]. However, by themselves, multidimensional
visualization techniques can be hard to interpret, may omit
or misrepresent valuable information from the original high-
dimensional space (due to its mapping to a lower dimen-
sionality), and are often not very scalable. An approach
which combines these visualization techniques with the actual
measurements to support an overview+detail analytical process
could provide an efficient way to manage, present, and get
insights about software quality.

Extracting meaningful information from multivariate data —
presented as plain text or tables, for example — to effectively
achieve an overview is, however, a difficult task. To make
an analysis effective and efficient, smooth interaction tech-
niques are required for combining, selecting, and filtering the
data. The degree of uncertainty and subjectivity should be
reduced [3] as it is generally difficult to extract meaningful
information out of multi-dimensional data. Since human pat-
tern recognition may only be applied in low dimensions, it is
necessary to map the data into a lower dimension when dealing
with multivariate data [4] to allow the detection of patterns,
anomalies or trends which are not immediately evident. The
visualization should support an active process of discovery and
allow the user to extract meaningful insights and relations.

We introduce an approach for the visual exploration of
quality of software systems based on a combination of visual-
ization and metrics. Marginal and joint distributions of metric
values are computed and presented to allow users to detect
patterns, correlations, and anomalies. The proposed approach
makes it possible to compare different software artifacts and
provides the basis for further analysis and decision making.
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A tool that implements the proposed approach is also
introduced, using multidimensional visualization techniques to
analyze quality goals and get insights from the data to uncover
the roots of good or bad quality. The implementation combines
the state-of-the-art dimensionality reduction method t-SNE [5]
and graphical representations of statistical overviews of quality
metrics and characteristics over the whole hierarchical struc-
ture of the quality model. It also enables users to examine,
compose, and change quality models, and to investigate the
effects of these changes in the corresponding multivariate data.
The tool accompanies the paper as an accepted artifact [6].

In summary, the work described in this paper introduces the
following main contributions:

• A novel framework for aggregating metrics into hierarchi-
cal quality models by using their probability distributions.

• An approach to use multiple linked views and dimension-
ality reduction to visually explore and compare multiple
aspects of software quality between different software
artifacts.

• The design and implementation of a new visualization
tool to support the detection of possible roots of bad or
good software quality.

The remainder of the paper is structured as follows. We sum-
marize related work and actual challenges in Section II. Then,
we provide needed background in Section III and formulate
design requirements in Section IV. To address the challenges
in Section V, we introduce our approach and present a
tool which fulfills the requirements. We provide theoretical
foundations for the approach and a detailed description of the
tool. In Section VI, we evaluate our tool and apply it to real-
world examples. Finally, we discuss and conclude the results
and point out directions for future work in Section VII.

II. RELATED WORK

Quality models are usually defined based on concrete mea-
surements of software metrics [1]. While many quality models
have been proposed, sometimes with tooling support [7]–[9],
it is not common to find visualization tools that support the
interactive definition and manipulation of these models. Ac-
cording to Merino et al. [10], very few software visualization
papers target quality assurance engineers.

Most metric visualization tools support the combination of
metrics on the fly. Explora [11] is a visualization tool that
allows the exploration of relationships between multiple soft-
ware metrics using a visualization technique called PolyGrid.
Each cell of the grid shows, for a collection of artifacts, the
values of four metrics mapped to the position, height, width,
and color of rectangles. Relationships between the metrics can
then be found while interacting with the multiple linked views.
Like our approach, it is geared towards the exploration of
relationships between metrics. However, there is no logical
aggregation of the metrics into a quality model, and they only
support four metrics at a time.

MetricView [12] maps the values of metrics over the nodes
of a UML diagram of the system, using a combination of
icons and colors for each selected metric. Again, there is no

quality model involved, so the metrics are all independent.
The relationships between metrics must be inferred from their
values in each node of the diagram, and only a limited amount
of metrics can be mapped at any time before the visual
mappings lose their effectiveness. It is also important to notice
that, different than projects such as MetricView, our work
does not focus on the structural organization of the software
artifacts, i.e., their connections regarding dependencies or the
hierarchy of the file system play no role in our visual analysis.

The Small Project Observatory [13] offers the possibility of
analyzing many different projects at the same time, showing
metrics in tables and stream graphs with the evolution of
metrics’ values over time. Our tool can also be used to analyze
many different software projects at the same time as long as
they use the same quality model.

In general, the observations above can also be applied to
other metric visualizations [14], [15]. Most of the related work
is geared towards the exploration of a fixed set of metrics
mapped to specific visual channels. Our tool does not impose
any limits on the number of metrics or artifacts.

Furthermore, our tool allows the user to define and manip-
ulate the quality model as they explore the visualized metrics,
and it can be used with models from different domains, with
no restriction as to the type of artifacts from which the
metrics were extracted. Our tool is interactive, works with
multiple linked views, and shows the impact of changing the
quality model into all the visualized artifacts. The work of
Chotjaratwanich et al. [16] is similar in this regard; they also
propose to visualize the quality of software projects based on
a hierarchical visualization of the quality model, using visual
mappings such as color and size on the models’ elements. In
contrast, our proposal uses a different visual abstraction: while
the measurements are based on the model, the visualization is
based on the artifacts under analysis. r Finally, it is important
to highlight one of the major novelties of this work: our quality
models are not based on aggregation as linear combinations
of metrics, as is the usual case. We suggest using an auto-
mated aggregation approach where quality scores are based
on joint probabilities. Our quality model expresses quality as
the probability of observing an artifact with equal or better
quality; good and bad quality is expressed as higher or lower
probabilities to find worse (sub-) systems.

III. BACKGROUND

We briefly introduce the theoretical background that the tool
is built upon, including concepts of software quality, graphs,
probabilities, and dimensionality reduction for the visualiza-
tion of high-dimensional data.

A. ISO standard

The ISO/IEC 25010:2011 standard [17] describes how soft-
ware attributes and qualities are related. This standard de-
composes software quality into eight quality characteristics:
functional suitability, performance efficiency, compatibility,
usability, reliability, security, maintainability, and portability.



Fig. 1. The ISO/IEC 25010 software product quality model.

Each quality characteristic is further decomposed into quality
sub-characteristics (as depicted by Figure 1).

The standard assumes that sub-characteristics can be mea-
sured by quality metrics. These metrics support the soft-
ware development process by identifying, for example, cloned
source code, bad coding style, performance issues, and security
problems.

Ideally, Software Quality Models based on the ISO standard
are organized in a tree-like structure. However, in practice,
the same quality metrics are used to measure multiple sub-
characteristics, so the quality models in use are generally
structured as Directed Acyclic Graphs (DAG).

The main challenge in visualizing a quality model as a
DAG is to find a balance between avoiding edge crossings
and preserving the hierarchical structure of the nodes. The
following diagram (see Figure 2) shows how one and the
same quality model based on the same number of metrics and
characteristics could be presented in different ways.

Fig. 2. Different priorities for visualizing a DAG: preserving hierarchy (on
the left) and avoiding edge crossings (on the right).

B. Probabilities

We are briefly introducing some basic concepts of probability
theory. In practice, one could make measurements experi-
mentally by applying different tools or devices and consider
their values as outcomes. However, possible uncertainty and
randomness play a role in predicting future events. Hence, we
are dealing with so-called random experiments with unknown
results for which outcomes cannot be predicted with certainty.
In order to formalize and describe all scenarios, consider a
so-called sample space, a set of all possible outcomes of a
random experiment. To describe all possible combinations of
outcomes, we need to consider a collection of subsets of the
sample space, which elements are called random events. In
order to quantify properties, we use the concept of random

variables. Possible variable values are numerical outcomes of
a random event. The measure to quantify the likelihood that
specific event will occur called probability. Probabilities could
be expressed in terms of the relative frequency of an event
as the absolute frequency normalized by the total number of
events.

C. t-SNE

When a software artifact is measured according to a quality
model (as described in Section III-A), the result is a mul-
tidimensional vector of measures (commonly real numbers),
where each component is the value of a metric. A set of
software artifacts measured according to the same quality
model (and, thus, applying the same metrics on all artifacts)
can be seen as a multidimensional data set, similar to a table
or a spreadsheet. The visualization of multidimensional data
sets is an active research field of information visualization,
with different visual abstractions used for different tasks and
goals [18].

One way of visualizing multidimensional datasets uses
Dimensionality Reduction (DR), a set of techniques that reduce
and transform the original attributes of the data set to generate
a lower-dimensional representation (usually in two- or three-
dimensions) that maintains, as much as possible, the original
structure of the dataset. The latter is then commonly visualized
as a scatterplot. Classic DR techniques include Principal
Components Analysis (PCA) and Multidimensional Scaling
(MDS), but more recent non-linear DR techniques have shown
promise in the visualization of complex real-world datasets.
For a comprehensive review, see [19].

One such promising non-linear DR technique is t-SNE [5].
In t-SNE, each item i of a dataset is initially modeled
as a neighborhood-based probability distribution Pij , where
high values mean that j is a close neighbor of i (in the
original multidimensional space). A similar (but not identical)
probability distribution Qij is computed from a candidate
low-dimensional representation of the data set, and a cost
is computed as the Kullback-Leibler Divergence between P
and Q. The candidate low-dimensional representation is then
iteratively improved with the goal of minimizing the cost as
much as possible.

As mentioned above, the final result of t-SNE (as with most
other DR techniques) is usually visualized as a scatterplot.
Considering that the cost (or the representation error) was
minimized, the analyst can then use this low-dimensional
representation as a proxy to the original high-dimensional



dataset, examining groups of similar points, patterns, and
trends in order to get insights about the original data.

IV. DESIGN REQUIREMENTS

Quality assessment of the specific software artifact needs
to combine various metrics into a total quality score. On
the other hand, most of metrics are defined at the level of
individual software artifacts, hence, for assessing the whole
quality there is a need to summarize the metrics quality scores
at the software project level. We formulate requirements for
an appropriate visualization of a quality assessment of an
artifact using a quality model. The output of the assessment is
provided as multidimensional multivariate hierarchical data.

The potential users of the tool are developers, expert
analysts, project managers, and researchers with a goal to
explore and find hidden correlations between different aspects
of software quality. Below, we formulate seven requirements
for our visualization. The visualization should

1) enable users to extract quantitative information, see
patterns, anomalies, relations, and structure,

2) involve elementary perceptional tasks to make further
analysis and judgment more accurate,

3) provide an overview of the entire behavior of both
software system and specific artifact,

4) support data exploration by providing sorting and filter-
ing,

5) support selection of artifact or set of them and get details
when needed,

6) support comparison of different artifacts, and
7) support smooth and effortless interaction.

The requirements are based on taxonomies of information [20]
and software [21] visualizations, visual analytics [22], cogni-
tive task analysis [23], basic perceptional principals [24], and
the well-known Visual Information-Seeking Mantra: overview
first, zoom and filter, then details on demand [25].

V. QUALITY MODELS INSIDE OUT

The choice of a visualization technique depends strongly on
the information, task, and context that are of interest for the
users, and on the data to be visualized. Under the assumption
that software metrics are well-defined mappings of software
entities to numerical values, we consider metrics values as
data to be visualized. In general, metrics have different units,
scale types and distributions of values. These metrics and
their values are aggregated to several criteria and finally to a
single quality factor. Graph-like representations are suitable for
visualizing such kind of data. Quality models can be directly
mapped to graphs. The initial informal models are, in general,
defined by experts. Preserving their hierarchical levels during
graph drawing is therefore more important than avoiding edge
crossings. Nodes of such a graphs represent information about
metrics, edges represent relations between metrics, criteria,
and factors. The main tasks are to compare different software
artifacts in order to judge and compare their quality on all
hierarchy levels and to detect anomalies which could point at

the roots of bad or good quality. Considering these tasks we
present an approach for the visualization joint distributions.

A. Approach

Quality does not mean the highest standard of the software,
but it should satisfy the users, even if it is not of the highest
absolute quality. Probabilities can express such a degree of
conformance. The goal of our approach is to provide an
understanding of the joint distributions through an aggregation
of individual distributions, which will provide an overview
and details at the same time. Such an approach provides
insights and indicates parts of data for further analysis. A
fundamental principle of the approach is the mapping of
metrics to graphical attributes. Users can easily explore the
values together with the hierarchical structure.

Metrics distributions provide details of different aspects of
software quality, and joint probability distributions provide an
overview of the total software quality. The similarity between
software artifacts can be expressed as conditional probabilities
if we consider each metric a random variable. We assume
that values for each metric are known and that, without
loss of generality, all metrics are defined such that larger
values indicate worse quality. We define a metric’s score as a
probability of finding another software artifact with a metric
value less or equal to the given value. The total score can now
be calculated as the joint probability.

The probability density function, PDF, and its correspond-
ing cumulative density function, CDF, provide a statistical
overview of the data for metrics, criteria, and factors. We
use the PDF to find the probability that variable is within
an interval and the CDF to find the probability for a variable
to be less than or equal to a particular value. The CDF of a
random variable X is the function FX(x) = P (X ≤ x), and
the connection between a PDF and a CDF can be expressed as
P (a < X ≤ b) = FX(b)−FX(a). Histograms are commonly
used to visualize a PDF. For integer metrics, these are based
on the area of the rectangle that indicates the frequency of
occurrences of metrics values. Because histograms are usually
based on equally spaced bins, the height of the rectangle could
be interpreted as a frequency. However, visualizations based
on histograms could be hard to interpret, especially if the user
wants to study frequencies based on unequal intervals. In this
case, the user needs to compare different areas of rectangles,
which according to Cleveland and McGill [24] is more difficult
than comparing lengths of intervals. Hence, it is better to
consider the CDF since it only requires the comparison of
lengths.

We discuss a tool which supports our approach and fulfills
the requirements as formulated in Section IV and solves most
of the problems addressed in Section II. In the following
Subsections we give an overview of the design, architecture,
the interactions, and implementation aspects. In Section VI we
exemplify the tool for two use cases. We calculate scores em-
pirically as relative frequencies. Software artifacts are grouped
using a similarity function and visualized by using a t-SNE-
based approach.



Fig. 3. Overview of the tool with a quality model for assessing technical documentation quality

B. Visualization Views

We give an overview of the features in our tool in the
following subsections. Each subsection refers to a section in
Figure 3. Quality Models Inside Out is composed of multiple
interconnected views that provide a filterable view to the
underlying input data and the model that describes it.

(A) Head Section: The head includes functionality to open
data sets and quality models. It is beneficial to keep the
data and its quality model separate, as they may change
independently (the latter is not subject to frequent changes).
If a new generation of the data is examined, its model could
be reused. Furthermore, models can be altered and exchanged
to validate them against the same data. An extra button was
added to open the included default dataset and model. Those
are part of the tool as they provide immediate insight into the

clear and obvious structure it uses. Users can present their own
data and models comfortable then. An option to anonymize the
loaded dataset allows obfuscation of the entities by hashing
their names.

All views of the tool share a common color scale for which
the input (domain) values can be dynamically changed by the
user (see Section V-D). A selection of different colormaps
(obtained from ColorBrewer [26]) is found in the head section.

(B) Quality Model View: Quality models represent the
relations of direct and indirect metrics within a system. Those
entities participate in “based/depends on”-relations. Therefore,
we have chosen to use acyclic, directed graphs to illustrate
such models. Such graphs allow for quick insights into entity
relations and make dependencies and influences visible. Each
entity in the underlying model is represented by a node in
the graph, and each such node provides technical insights into



the model, such as nesting depth or type, or the number of
children and parents. Dependencies are shown using directed
edges. The tool allows for disconnected nodes and multiple
parents. While the former is useful during composition and
examination of models, the latter shows the impact of one
child on more than one parent. To not having to alter the
model, a node can be temporarily suspended, without having
to remove its edges. Furthermore, multiple root nodes (nodes
with only incoming edges) are allowed. Although a general
quality model has only a single root node (the main quality),
this node is most often composed of sub-qualities, which may
be adequate candidates for examination, too. A meter for each
node indicates its depth, compared to the maximum depth of
any node in the model. Currently, the ordinal scale of colors
used supports eight hierarchy levels. Technically however, no
limit is imposed on the depth or complexity of the hierarchy.
It has been shown that human perception is practically bound
to perceive no more than eight categorical colors best [27].

When a model is loaded or modified, it must be recomputed.
The Quality Model view bears another button for that purpose
that is only enabled if a re-computation is necessary. It must
be explicitly commenced by the user, as it may be compu-
tationally expensive. Information about that cost is logged to
the status box’ log, whenever a re-computation is necessary.
Details about the calculation of the cost are provided in Section
V-C.

(C) Distributions View: For each node of the loaded model,
we show a distribution of all entities in the data set, according
to the aggregation of their values or their underlying data. Each
plot is based on an empirical CDF. Since the plots show the
cumulative probability distributions, the values on the y-axis
are always in the range [0, 1].

The order of the plots is a topological order of the corre-
sponding node in the quality model hierarchy, i.e., the most
highly aggregated node is on top, while nodes corresponding
to direct metrics are found at the end. Each distribution can be
selected as the input (domain) of the color scale to which all
views are linked; more details are provided in Section V-D.

(D) t-SNE Plot View: A t-SNE scatterplot is used to support
the analyst in identifying similar entities and detecting clusters
and patterns in the underlying model’s data set. More details
about the t-SNE algorithm are provided in Section III-C. We
use custom parameter settings that fit the dataset derived from
published recommendations [5], [28].

(E) Selection View: The selection view has the general
purpose of identifying the entities from the dataset. While
the other views only plot their values, they do not allow to
identify the entities. This task would be excruciatingly hard
with thousands or more entities.

The view only provides the ID of the entity and its cal-
culated empirical CDF value (the probability to find another
entity within the selection with the same or lower value).
Typically, one is interested in that value according to the
general quality, or some root node of the model. However,
it may be helpful to identify similar entities with regard to

another aggregation or metric. Therefore, it is possible to select
another node’s CDF values to sort by.

(F) Status View: The bottom view informs about the status
of the application; errors, progress, and current state. Our tool
facilitates asynchronous parallel work done in the background.
It is crucial to feedback such information to the user while
waiting.

A loaded quality model can be printed to the output area
using a button. This printout is a textual overview of the
model’s hierarchy and an additional illustration to the graph
from Subsection V-B. Since the graph allows modifying the
model, another button is offered to export the currently loaded
model in its present state. The exported data also includes data
about the visual representation, such as each node’s position.
Exporting will download the model as a JSON-file.

C. Summary of Architecture

Our web-based tool facilitates observable data (through RxJS1)
and linking by using Crossfilter2. While the former is used to
propagate that data and a model is available, the latter is used
for brushing and linking in the Distributions-, the t-SNE plot-
and the Selection-Views.

Visualizing the graph in the Quality Model View is done
using d3.js3 and is based on SVG. The plots, however,
use an HTML5-canvas, since the performance with thou-
sands of SVG-elements quickly deteriorates. The plots in the
Distributions- and t-SNE plots-Views are drawn using dc.js4.
The t-SNE itself is calculated by the library tsnejs5. To support
sorting in the Selection view, the plug-in tablesorter6 for
jQuery is used.

The main view is visually and logically componentized so
that each view is a component of its own. Albeit this appli-
cation being data-driven, it is not using a related framework,
such as Angular. Instead, we decided to use vanilla ES6 where
possible. The head’s component is the focal point for starting
to use the application, by loading a data set and its model.

D. Interactions

Our tool makes extensive use of linking and brushing fea-
tures [20] to connect the various views. Again, we refer to the
sections of Figure 3.

(A) Manipulating the loaded quality model: Quality models
can vary significantly with regard to their design. While one
model is shallow and defines a tree-like structure where all
nodes point to one single top-level node representing the
overall quality, other models may define deeper hierarchies

1ReactiveX, An API for asynchronous programming with observable
streams, http://reactivex.io/

2Crossfilter, Fast n-dimensional filtering and grouping of records, https:
//github.com/crossfilter/crossfilter

3d3, Bring data to life with SVG, Canvas and HTML, https://github.com/
d3/d3

4dc.js, Multi-Dimensional charting built to work natively with crossfilter
rendered with d3.js, https://github.com/dc-js/dc.js

5tsnejs, Implementation of t-SNE visualization algorithm in Javascript,
https://github.com/karpathy/tsnejs

6tablesorter, Flexible client-side table sorting, http://tablesorter.com/

http://reactivex.io/
https://github.com/crossfilter/crossfilter
https://github.com/crossfilter/crossfilter
https://github.com/d3/d3
https://github.com/d3/d3
https://github.com/dc-js/dc.js
https://github.com/karpathy/tsnejs
http://tablesorter.com/


with intermediate nodes that aggregate other nodes and result
in several top-level or root nodes. This makes it impractical
to use one layout algorithm that satisfies all those different
needs. Therefore, we decided to let the user arrange the model
manually and to store positional information within the model.
However, we also included the option of a force-based graph
layout, so that an initial layout can be obtained.

Furthermore, it is possible to disable a node, so that its
impact on a parent node can be examined. An edge between
two nodes can be removed or established, to create a parent-
child relation. However, multiple parents are allowed, while
circular references are prohibited. Nodes can be created and
deleted. Hence, it is possible to create quality models with our
tool and to validate those. It is possible to start with an empty
model and to compose it using the available data and controls.
While nodes can be dragged, clicking them will select (scroll
to) the related plot in the Distributions View.

The rendered graph of the quality model can be panned and
zoomed, so that the nodes’ extensive details become visible.
These interactions allow a closer inspection of nodes and their
connection as well as fitting large models into the constrained
space of the view.

(B) Selecting entities in the Distributions View: To aid the
exploration of large datasets using dynamic queries [29], a
user may select data in any plot using a rectangular selection.
Since each node may have a different distribution for each
entity, this action will highlight the selected entities across all
other plots. The user may make additional selections in other
plots, to further filter the data. This filtering applies to all plots,
including the t-SNE-plot. Instances not currently selected are
grayed out. The plots are in descending order by node-depth,
as we assume that the higher the nesting, the more aggregated
and therefore more relevant to quality a node is.

(C) Dynamic color scale for comparing distributions:
One additional element for the linked exploration of multiple
distributions is the possibility to dynamically change the color
scale according to a distribution. When one of the distributions
is selected (by clicking on color), the overall color scale
of the tool will change to reflect the values of the selected
distribution, i.e., the colors will map the same values as
the y-axis of the selected distribution. Since all views are
connected to the same color scale, the user will then be able to
compare the selected probability distribution against all others
by inspecting how the colors appear in each chart. Similar
color patterns, i.e., the colors increase from left to right,
indicate similar distributions, while random color patterns
indicate very different ones.

(D) Selecting entities in the t-SNE plot View: The t-SNE
scatterplot is an interactive, low-dimensional representation of
the software artifacts and their multiple quality measures, gen-
erated with the method described in Section III-C. Similarly
to the probability distribution charts, the t-SNE scatterplot is
also interactive and allows selecting and filtering points and
groups of interest. Since all charts are linked, this allows the

analyst to explore patterns of each distribution regarding the
points or groups of interest.

(E) Sorting and exploring in the Selection View: The
Selection View’s purpose is to identify selected instances and
to order them by their empirical CDF value. It also prints that
value so that similar instances can be found. Initially, the first
root node’s empirical CDF values are used for the selection.
However, the filtered entities may be ranked and sorted using
any other node value.

E. Implementation Aspects and Design Challenges

Our tool is based on empirical CDF data, which we calculate
on the data manually. Our implementation supports uni-, bi-
and multivariate data and is unit-tested. Each node that is
connected to a column in the loaded data or based on an
aggregation has its empirical CDF calculated. The computation
is parallelized7 and uses WebWorkers in the browser. Each
node’s position in the graph is determined by its children and
data sources. A unique deterministic ID is computed from that
position and used to detect whether a node or its children
need to be re-computed. In that way, only changed nodes of
the quality model are subject to the computationally expensive
computation of the empirical CDF.

The cost for recomputing a node is expressed as big-O [30]
worst-case amount of operations, which here is O = mn2,
with m being the number of columns (here: children) and
n being the number of entities. This information is used to
display progress to the user while the calculation is ongoing.
The computation of a node is done in a depth-first manner.

We support CSV-based data that contains one or more
columns to generate an entity-ID from and any number of
columns that hold numeric data. The quality model is defined
as a plain JSON-file, whose format supports the following
features: (a) a list of columns to use for generating an entity-
ID and (b) a list of columns to use as nodes in the model.
Each node definition can define or reference any other of the
defined nodes as children. Also, each node can be disabled
and carry optional layout information for the graph-view.

VI. USE CASES

We study two real-world cases to evaluate our prototype. We
demonstrate the usefulness and practicality of the proposed
approach and tool with a visual exploration of real-world
multivariate hierarchical datasets represented by quality mod-
els from the domains of technical documentation quality and
software maintainability assessment.

A. Technical Documentation

In this data set, the observations correspond to a quality model
which follows the Factor-Metric-Criteria structure [31]. The
quality model relies on 31 metrics that are used to evaluate
eight criteria: Cloning Issues, Anti-Patterns, File Complexity,
Hierarchy Complexity, Language Issues, Referential Com-
plexity, Text Complexity, and Validity Issues (see Figure 4).

7Parallel.js, Easy multi-core processing with JavaScript, https://github.com/
parallel-js/parallel.js/tree/master

https://github.com/parallel-js/parallel.js/tree/master
https://github.com/parallel-js/parallel.js/tree/master


The metrics’ values were collected using Quality Monitor™8.
Details about the analysis engine are available in a previous
work [32]. The complete dataset is composed of 33 projects
with a total of 21,121 documents. For each metric across
all documents, a score was calculated based on an empirical
CDF . Each criteria score was quantified as a joint probability
distribution calculated as an empirical multivariate CDF of
all metrics that contribute to the criterion. The factors’ scores
are expressed as the multivariate CDF of their criteria.

In order to better illustrate the results while examining this
case study, we worked with a subset of ten metrics, three
criteria, and a sample of 5,000 files (see Figure 5).

The goal in this case study is to find common flaws and
defects, as well as duplicate documentation. Also, we tried
to identify documents which share a similar value for text
complexity. By looking at the overall quality, it could be deter-
mined that documents with lower quality are spread out across
almost the whole sample population and its detected clusters,
as of the t-SNE (see Figure 6). The plots for Cloning Issues
and Anti-Patterns show that with an approximate probability
of 60% for the former resp. 85% for the latter, documents
with lower joint probabilities can be found. Interestingly, those
documents seem to reside in all but one clusters for Cloning
Issues and precisely three clusters for Anti-Patterns. From
that, it can be concluded that cloning affects almost the entire
documentation. Furthermore, about half the files seemingly
have the same value for cloning issues, which indicates the
same degree of cloning for half the sample population, and
hence probably some automatic operation that leads to it, such
as automatic generation of documentation from an application
programming interface (API).

Since Anti-Patterns are based on metrics such as broken
references, it is likely that affected documents are in similar
portions of the documentation and that those share some
similarity, such as the same editor, type of generator, or were
subject to some common error. Also, after having removed two
metrics not related to references, we almost obtain the same
results for Anti-Patterns. We can conclude that this criterion is
measuring too many different things, and that it may be split
into different criteria (such as “Reference Issues”).

B. Open Source Software (default quality model)

In this data set, observations correspond to a quality model
for maintainability assessment based on 17 metrics [33]. The
metrics’ values were collected using VizzMaintenance9. The
dataset for visualization was composed of source code of the
latest version of JUnit10 (last modified April 2018), consisting
of 1,119 classes in total. For each class, metrics’ scores were
calculated as values of the empirical CDF function, then
Maintainability was expressed as multivariate CDF of its
metrics.

8Quality Monitor™, web-based quality analysis tool for software and
technical documentation, http://iqm.arisa.se/iqmonitor

9 VizzMaintenance, Eclipse plug-in supporting Eclipse 3.5 or higher, http:
//www.arisa.se/products.php

10JUnit, A framework to write repeatable tests,https://github.com/
junit-team/junit5

Fig. 4. Quality model for assessing technical documentation quality.

http://iqm.arisa.se/iqmonitor
http://www.arisa.se/products.php
http://www.arisa.se/products.php
https://github.com/junit-team/junit5
https://github.com/junit-team/junit5


Fig. 5. The limited quality model of the technical documentation use case
showing the three aggregation nodes in detail.

Fig. 6. The low-quality documents of the technical documentation.

This data set’s single criterion or score, that all its files are
made comparable with, is Quality (cf. Figure 9). Note that this
use case does not use the intermediate criteria Maintainability,
Size and Complexity and its Quality is based on all available
metrics directly. The distribution of the empirical CDF for
it is rather monotone and linear, only a single spike can be
observed, that applies to about 5% of the files. For various
runs of t-SNE, we obtain about six to nine clusters, with the
Maintainability being spread out almost equally over each.
The generated clusters by the t-SNE seem to be rather stable,

which speaks in favor of our tool’s repeatability and well-
chosen parameters for perplexity and number of iterations.

When investigating various metrics, it can be observed that
none of them is directly correlated to Lines of Code (LOC),
which shows an almost perfect linear distribution. That is an
interesting finding, as it means that LOC is rather insignificant
for any quality assessment in this project. As shown in Fig-
ure 7, when selecting entities of Number of Methods (NOM),
instances are almost evenly distributed across the whole range
of LOC.

Fig. 7. Almost linear distribution for metric LOC.

We also find that a range of Response For a Class (RFC)
is selected. This suggests that the two metrics are connected,
which is not surprising in this case, since RFC includes NOM.
This use case was therefore more suitable to unveil shortcom-
ings in the underlying quality model, rather than finding files
with good or bad quality. The definition of RFC alone is not
able to substantiate low understandability. The finding here
rather is that RFC and NOM are very similar in terms of their
distribution. We can hence conclude that this default model,
as given by VizzMaintenance, is not suitable to describe the
maintainability of software. By manually engineering another
quality model based on the available data, we have revalidated
the same software against it in the next section.

C. Open Source Software (engineered quality model)

By reusing the data from the previous use case, which is based
on a snapshot of JUnit, we have composed a second quality
model to validate it against and is shown in Figure 9. The
improved model uses the top-level node Quality, that is an



aggregation of Size (LEN, LOC, NOC, NOM, WMC), Complex-
ity (CBO, CYC Classes, DAC, DIT, MPC and Maintainability
(ILCOM, LCOM, LD, LOD Class, TCC). This engineered
model provided much clearer insights into the project and
its structure. Through various runs of the t-SNE, five clusters
could be determined stably. About 42% of the files with low
maintainability are now found in almost only two clusters.
Those files also happen to have a lower than average quality,
as was found by sub-selecting instances in the quality-plot.

By aggregating the data into a re-engineered quality model,
we were able to detect clusters and to identify instances much
clearer. Note that some of the metrics are now aggregated to
more than one node, such as the Number of Children (NOC),
which is an indicator for both Size and Complexity.

Fig. 8. Clusters of the manually engineered quality model for use case C,
showing five clearly discernible clusters and identifying instances with low
quality and low maintainability.

VII. DISCUSSION AND CONCLUSION

In this paper, we demonstrate the practicality and usefulness
of using joint probabilities and visualization for the quality
assessment of software using metrics. Our tool was designed
to support and help in understanding both marginal and joint
distributions of metrics values and visualizing the similarities
between software artifacts based on these distributions. The
interactive metric plots (and the t-SNE view) allow the user
to inspect and understand the probability distributions of
each individual metric, and the probability calculations of the
aggregate metrics are directly affected by the organization of
the model as the users interact with the visualization. We
illustrate the usability of the tool with two case studies of
real-world examples: a set of technical documents and an open
source project written in Java.

Our main goal was to improve upon classical aggrega-
tion techniques and to allow the users to freely explore
the composition of the quality model and its effects on the
software artifacts. This is different than the more classical
data-oriented exploration, i.e., combining the metrics before
the visualization, which might work when there is an objective

Fig. 9. Engineered quality model for assessing software quality using set of
metrics proposed by VizzMaintenance.

and specific analysis goal and the method for combining the
metrics is predefined and strict. Our proposal, on the other
hand, gives the user a flexible framework to interactively test
”what if” hypotheses when it comes to metric aggregation.

Taking advantage of the fact that the tool allows the
users to make changes in the quality model, we consider as
one possible avenue for future work to make it possible to
compare different quality models. The underlying structure
of the systems being assessed is also currently not part of
the analysis. Complex software systems are usually organized
in, for example, classes, packages, and namespaces. Using
our method to find clusters of entities with similar quality
assessments, these can be compared to the system’s underlying
structure to reason about where the quality problems are
located, and whether the organization is adequate or there is
room for improvement.
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