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•  The AGP is NP-hard for  point guards with holes [O’Rourke & Supowit 1983] , vertex guards without holes 
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Other structural results
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Motivated by wireless communication: 
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2VR(p)/kVR(p) can have O(n) connected 
components.
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Point and edge k-transmitters Lower bound Upper bound

Simple n-gons ⌊n/5⌋for k=2 [4] ⌊n/3⌋for k=2 *

O(n/k) k-transmitters [5]

Monotone n-gons ⌈(n-2)/(2k+3)⌉ [1] ⌈(n-2)/(2k+3)⌉ [1]
Monotone orthogonal n-gons ⌈(n-2)/(2k+4)⌉ for k=1, k even [1]


⌈(n-2)/(2k+6)⌉ k≥3 odd [1]
⌈(n-2)/(2k+4)⌉ for k=1, k even [1]

⌈(n-2)/(2k+6)⌉ k≥3 odd [1]

Ortogonal (2m)-gon m even: Single (m-1)-transmitter; m odd: Single m-transmitter [2]
Spiral n-gons ⌊n/4⌋for k=2 [3]
Arrangement of lines in the plane Single ⌈2n/3⌉-transmitter [2]


Two ⌈n/2⌉-transmitters [2]
Single ⌈2n/3⌉-transmitter [2]

Two ⌈n/2⌉-transmitters [2]

d-dim Euclidean space \w n convex obstacles Single (dn+1)/(d+1)-transmitter [6]

Plane with obstacles ⌈(5n+6)/12⌉ 1-tr for n disjoint line segments [3]
Simple n-gons ⌊n/6⌋for k=2 [4] ⌊3n/10⌋+1 for k=2 *
Monotone n-gons ⌈(n-2)/9⌉for k=2 [4] ⌈(n-2)/8⌉for k=2 [4]
Monotone orthogonal n-gons ⌈(n-2)/10⌉for k=2 [4] ⌈(n-2)/10⌉for k=2 [4]
Orthogonal n-gons ⌊(3n+4)/16⌋for k=2 [4] ⌈(n-2)/10⌉for k=2 *

Tight bounds

[1] Oswin Aichholzer, Ruy Fabila-Monroy, David Flores-Peñaloza, Thomas Hackl, Jorge Urrutia, and Birgit Vogtenhuber. Modem illumination of monotone polygons. 


[2] Ruy Fabila-Monroy, Andres Ruiz Vargas, Jorge Urrutia. On Modem Illumination Problems


[3] Brad Ballinger, Nadia Benbernou, Prosenjit Bose, Mirela Damian, ErikD. Demaine, Vida Dujmovic, Robin Flatland, Ferran Hurtado, John Iacono, Anna Lubiw, Pat Morin, Vera 3Sacristán, Diane Souvaine, and 
Ryuhei Uehara. Coverage with k-transmitters in the presence of obstacles. 


[4] Sarah Cannon, Thomas G. Fai, Justin Iwerks, Undine Leopold, and Christiane Schmidt.  Combinatorics and complexity of guarding polygons with edge and point 2-transmitters. 


[5] Frank Duque, Carlos Hidalog-Toscano. An upper bound on the k-modem illumination problem


[6] Radoslav Foulen, Andreas F. Holmsen, János Pach. Intersecting Convex Sets by Rays

*from 0-transmitters

Few transmitters

Low k
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Central concept used for monotone polygons: Splitting Lemma from [Aichholzer et al., 2009]

Oswin Aichholzer, Ruy Fabila-Monroy, David Flores-
Peñaloza, Thomas Hackl, Jorge Urrutia, and Birgit 
Vogtenhuber. Modem illumination of monotone polygons. 
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Central concept used for monotone polygons: Splitting Lemma from [Aichholzer et al., 2009]
Updated version—to ensure that no two vertices have the same x-coordinate:
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•WRP in polygons with holes is NP-hard [Chin&Ntafos 1986] [Dumitrescu&Tóth 2012]
• As for the AGP, we can alter the capabilities of the watchman or the area to be guarded
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S⊂P of the) points of a polygon P (“sees” all of S or P)

๏ Find shortest tour for the k-transmitter that “sees” all 
of S or P and moves in P (a watchman route for a k-
transmitter)

๏ With or without a given starting point s                      
k-TrWRP(S,P,s) or k-TrWRP(S,P)

• Extensions do not translate to k-transmitters for k≥2 (no 
longer local!)
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 Corollary: The same holds for k-TrWRP(S,P,s).
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Well, actually, for k≥4 hard to approximate even for “simpler” polygon classes (than simple 
polygons).
[Recent joint work with Anna Brötzner, Bengt J. Nilsson, Valentin Polishchuk]
When we map a point (x, y) to (x, y+cx) for a large enough constant c, we obtain a x-y-monotone 
polygon for which the visibility properties are maintained
We can even transform our histogram into a star-shaped polygon:

Small detour for a recent result 
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Small detour for a recent result 

Here, we need a starting point •
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 Theorem 2: For a discrete set of points S and a polygon P, the k-TrWRP(S,P) does 
not admit a polynomial-time approximation algorithm with approximation ratio c ln |S| 
unless P=NP, even for k=4 and for P being a histogram, or an x-y-monotone polygon; 
for the k-TrWRP(S,P,s), this holds even for star-shaped polygons.

Small detour for a recent result 
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 Theorem 3: Let P be a simple polygon with n=|P|. Let OPT(S,P,s) be the optimal 
solution for the k-TrWRP(S,P,s) and let R be the solution by our algorithm ALG(S,P,s). 
Then R yields an approximation ratio of O( log2 (|S| n) log log (|S| n) log |S|).
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Example: When we visit k33 (in point p33), we also visit the cuts of k33, k21 and k15. 

Thus, we have edges from p33 to ĉ33, ĉ21, and ĉ15.
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Approximation Algorithm for k-TrWRP(S,P,s)
- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

- Build complete graph G on candidate points pi,j:

- Gray edges: length of geodesic

- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit ĉi,j)

- |V(G)|=O(n |S|)

- Group all candidate points that belong to the same point in S: 

- Add 𝛾0=s

p3,2

g3,2 ĉ3,2

Here: 

𝛾1 candidate points that belong to s1,


𝛾2 candidate points that belong to s2, 


𝛾3 candidate points that belong to s3, 

𝛾0=s,  
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Approximation Algorithm for k-TrWRP(S,P,s)
- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

- Build complete graph G on candidate points pi,j:

- Gray edges: length of geodesic

- Add pink edges: edge cost 0 (any path/tour visiting pi,j must visit ĉi,j)

- |V(G)|=O(n |S|)

- Group all candidate points that belong to the same point in S: 

- Add 𝛾0=s
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-Claim 4: CHP(PC’’) is not longer than CHP(OPT, PC’’) and CHP(PC’’) visits one point per 𝛾i (except for 𝛾0). 
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-  To connect s (which may lie in the interior of CHP(PC’’), we need to connect s, which costs at most ||OPT(S,P,s)||.



Click to edit Master title style

35

Proof idea: alter(unknown) optimal route OPT(S,P,s) to pass through points from V(G), and new tour has length at most constant· OPT(S,P,s)
- Identify all cuts of the kVR(si) that OPT(S,P,s) visits—set C (C⊆Call)

-Let oi,j denote the point where OPT(S,P,s) visits ci,j (first time)
- Identify subset C’ of essential cuts (C’⊆C)

-Order geodesics to essential cuts by decreasing Euclidean length: ℓ(g1)≥ℓ(g2)≥…≥ℓ(g|C’ |)

-  C’’←C’
-For t=1 TO |C’ |

- Identify all Ct⊂C’ that gt intersects

-C’’ ← C’’\Ct

-GC’’  set of geodesics that end at cuts in C’’

-Claim 1: The geodesics in GC’’ are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

-Claim 2: Each essential cut visited by OPT(S,P,s) (each cut in C’ ) is touched by exactly one of the geodesics.

-The geodesics in GC’’  intersect the cuts in C’’ in points of the type pi,j—set PC’’

-Build relative convex hull of all oi,j and all points in PC’’ (relative w.r.t. polygon P): CHP(OPT, PC’’)

-Claim 3: No geodesic can intersect CHP(OPT, PC’’) between a point oi,j  and a point pi,j  on the same cut. Thus, between any pair of points of the type 
oi,j on CHP(OPT, PC’’), we have at most two points of PC’’. CHP(OPT, PC’’) has length at most 3·||OPT(S,P,s)||.

-Claim 4: CHP(PC’’) is not longer than CHP(OPT, PC’’) and CHP(PC’’) visits one point per 𝛾i (except for 𝛾0). 

-  To connect s (which may lie in the interior of CHP(PC’’), we need to connect s, which costs at most ||OPT(S,P,s)||.



Open Problem: k-Transmitter Watchmen
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A cut c partitions polygon into two subpolygons: 

Ps(c)—subpolygon that contains starting point s

A cut c1 dominates c2 if Ps(c2)⊆Ps(c1)

Essential cut: not dominated by other cut

➡ OPEN PROBLEM #2: Is there a structure like 
essential cuts that guarantees k-visibility of P when 
visited?

• We see all of P iff we visit all essential cuts.
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stemming from 0-transmitters

• Open Problem #2: Structural analogue for extensions for 0-transmitters?
• Approximation for watchmen routes for k-transmitters without given starting 

point and/or when all of P should be monitored?
• Generally: More structural insights for k-transmitters
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