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The Art Gallery Problem (AGP)

Given: Polygon P

How many guards do we
need to monitor P?
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=» Lower bound of 2

The Art Gal Iery PrOblem (AG P) However, generally, the ratio between minimum
number of guards and maximum number of
witnesses can be arbitrarily bad:
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=» Lower bound of 2

The Art Gal Iery PrOblem (AG P) However, generally, the ratio between minimum
number of guards and maximum number of
witnesses can be arbitrarily bad:
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The Art Gallery Problem (AGP)

So-called "Art Gallery Theorems™: x guards are always sufficient and sometimes necessary to guard a
polygon with n vertices (polygon from a specific class)

Simple polygon:
 Does not intersect itself
* No holes
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The Art Gallery Problem (AGP) 2

So-called "Art Gallery Theorems™: x guards are always sufficient and sometimes necessary to guard a
polygon with n vertices (polygon from a specific class)

» Simple polygon with n vertices: | 3] are sometimes necessary and always sufficient. [Chvatal 1973]

Computational Complexity

 The AGP is NP-hard for point guards with holes [O’'Rourke & Supowit 1983] , vertex guards without holes
[Lee & Lin 1986], point guards without holes [Aggarwal 1986]

« The AGP is aR-complete [Abrahamsen, Adamszek & Miltzow 2021]

Simple polygon:

* Does not intersect itself P

point ‘ ‘ vertex - No holes
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The Art Gallery Problem (AGP) 2

So-called "Art Gallery Theorems™: x guards are always sufficient and sometimes necessary to guard a
polygon with n vertices (polygon from a specific class)
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instances, heuristics; polytime algorithms

Simple polygon:
Other structural results

* Does not intersect itself P

point ‘ ‘ vertex - No holes
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The Art Gallery Problem (AGP) and Its Variants

We can alter:
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The Art Gallery Problem (AGP) and Its Variants

We can alter:
 Capabilities of the guards « Environment to be guarded

Staircase visibility/ s-visiblity:

Lo

i

Two points are s-visible to each other
iIf there exists a staircase path in P
that connects them.
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The Art Gallery Problem (AGP) and Its Variants 2

We can alter:
 Capabilities of the guards « Environment to be guarded

Staircase visibility/ s-visiblity: Rectilinear visibility/ r-visibility:
? ® ® Lj
® ®
® ®
Two points are s-visible to each other Two points are r-visible to each other
if there exists a staircase path in P if there exists a rectangle in P
that connects them. that contains both points.

“ Formally: a point p is 2(k)-visible from a point g, if the
Il.“ b'NFV%E'SNl% line segment pq intersects P in at most two (k)
connected components.



“ Formally: a point p is 2(k)-visible from a point g, if the
Il.“ b'NFV%E'SNl% line segment pq intersects P in at most two (k)
connected components.



Motivated by wireless communication:

(4

“ Formally: a point p is 2(k)-visible from a point g, if the
Il.“ b'NFV%E'SNl% line segment pq intersects P in at most two (k)
connected components.



kK-Transmitters
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k-/2-Transmitter

J 2VR(p)/kVR(p) can have O(n) connected
| P components.
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* Weak general position: query point not on line through two vertices of P
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* Increase 0 from 0 to 211 =» edge list of re changes when a vertex vis encountered
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*Otherwise: replace one edge by another
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Computation of the k-Visibility Region

» Simple polygon P, query point ge P

* Weak general position: query point not on line through two vertices of P
First: O(n2) algorithm [Bajuelos, Canales, Hernandez, Martins 12]

Then: computation in the limited workspace model [Bahoo, Banyassady, Bose, Durocher, Mulzer 19]
* |dea:
* Coordinate system with g at origin,
* B¢[0,2m): reray from g eminating in CCW angle 8 with x-axis
* Edges that ray intersects — Edge list of rg, sorted according to increasing dist from g; j-the element eg(j)
. . iIncident edges on same side of re—cin total in P
* Increase 0 from 0 to 211 =» edge list of re changes when a vertex vis encountered
*Critical vertex: two edges added/removed
*Otherwise: replace one edge by another
* k-visible from q: first k+1 elements in the edge list of rg
* When critical vertex is encountered, part of the ray re may become a window of the k-visibility region
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» Bahoo et al. show how to first find the first k+7 intersecting edges of the ray through the first critical
vertex, and then how to update for the next critical vertices

= They can report the k-visibility region of ge P in O(kn+cn) time using O(1) words of workspace
* For O(s) workspace (s<{1,...,n}) they improve the runtime

1. Algorithm that processes vertices in angular order in batches of size s = output windows of the
batch

2. Algorithm that skips non-critical vertices in processing, process critical vertices in angular order in
batches of size s— output windows of the batch (different data structure)

= They can report the k-visibility region of geP in O(cn/s + ¢ logs + min{[ k/s| n, nlog logsn}) expected
time using O(s) words of workspace

Last: O(nk) algorithm [Bahoo, Bose, Durocher, Shermer 2020]
» Based again on radial decomposition
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Task: Find the minimum cardinality point 2-transmitter [k-transmitter] cover of P.

Minimum Edge 2-transmitter Cover (ME2TC) Problem:

Given: Polygon P.
Task: Find the minimum cardinality edge 2-transmitter cover of P.

e MPKTC is NP-hard for simple polygons—reduction from Minimum Line Cover (MLCP)

e MP2TC is NP-hard for orthogonal, simple polygons—reduction from MLCP4, where
given lines have only one out of 4 slopes, shown hard by [Biedl, Irfan, Iwerks,
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Task: Find the minimum cardinality edge 2-transmitter cover of P.

e MPKTC is NP-hard for simple polygons—reduction from Minimum Line Cover (MLCP)

e MP2TC is NP-hard for orthogonal, simple polygons—reduction from MLCP4, where
given lines have only one out of 4 slopes, shown hard by [Biedl, Irfan, Iwerks,
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 Point k-transmitter travelling along s

* k-transmitter can see a point in P if the perpendicular from p onto s intersects P’s boundary at most
k times

* Goal: find minimum number of sliding k-transmitters to guard P (STk)
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* k-transmitter can see a point in P if the perpendicular from p onto s intersects P’s boundary at most
k times
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* k-transmitter can see a point in P if the perpendicular from p onto s intersects P’s boundary at most
k times

* Goal: find minimum number of sliding k-transmitters to guard P (STk)

 Constant-factor approximation for any fixed non-negative k

» STo: NP-hard in rectilinear polygons with holes even if only horizontal o-transmitters

« STk, k>0: NP-hard even for simple, monotone polygons
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 Axis-parallel line segment s in polygon P

Sliding 2-transmitter

 Point k-transmitter travelling along s

* k-transmitter can see a point in P if the perpendicular from p onto s intersects P’s boundary at most
k times

* Goal: find minimum number of sliding k-transmitters to guard P (STk)

 Constant-factor approximation for any fixed non-negative k

» STo: NP-hard in rectilinear polygons with holes even if only horizontal o-transmitters

« STk, k>0: NP-hard even for simple, monotone polygons

 |n/4] horizontal sliding k-transmitters sometimes necessary and always sufficient in rectilinear ——
polygons

 Simple, rectilinear polygons: |(n+1)/5] sliding o-transmitters such that no two of them intersect —

each other are always sufficient
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[Chin&Ntafos 1986] [Tan, Hirata, Inagaki 1999] [Dror, Efrat, Lubiw, Mitchell 2003] [Carlsson, Jonsson, Nilsson 1993] [Tan 2001]

*\WWRP in polygons with holes is NP-hard [Chin&Ntafos 1986] [Dumitrescu&Toth 2012]
* As for the AGP, we can alter the capabilities of the watchman or the area to be guarded

A cut c partitions polygon into two subpolygons:

/ S Ps(c)—subpolygon that contains starting point s
el P.(cy) A cut c; dominates c; if Ps(c2) CPs(c1)
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k- Transmitter Watchman Routes

* Mobile k-transmitter
e Goal:

@ Establish a connection with all (or a discrete subset
ScP of the) points of a polygon P (“sees” all of S or P)

@ Find shortest tour for the k-transmitter that “sees” all
of S or P and moves in P (a watchman route for a k-
transmitter)

@ With or without a given starting point s

» Extensions do not translate to k-transmitters for k=2 (no
longer local!)
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Theorem 1: For a discrete set of points S and a simple polygon P, the k-TrWRP(S, P) does not
admit a polynomial-time approximation algorithm with approximation ratio ¢ In ISl unless P=NP, even
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Small detour for a recent result

k- Transmitter Watchman Routes

Well, actually, for k=4 hard to approximate even for “simpler” polygon classes (than simple
polygons).
[Recent joint work with Anna Brotzner, Bengt J. Nilsson, Valentin Polishchuk]
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k- Transmitter Watchman Routes

Well, actually, for k=4 hard to approximate even for “simpler” polygon classes (than simple
polygons).

[Recent joint work with Anna Brotzner, Bengt J. Nilsson, Valentin Polishchuk]

When we map a point (x, y) to (x, y+cx) for a large enough constant ¢, we obtain a x-y-monotone
polygon for which the visibility properties are maintained

We can even transform our histogram into a star-shaped polygon:
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Small detour for a recent result

Here, we need a starting point
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Small detour for a recent result

k- Transmitter Watchman Routes

Theorem 2: For a discrete set of points S and a polygon P, the k-TrWRP(S, P) does

not admit a polynomial-time approximation algorithm with approximation ratio ¢ In |S|
unless P=NP, even for k=4 and for P being a histogram, or an x-y-monotone polygon;
for the k-TrWRP(S, P,s), this holds even for star-shaped polygons.
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Approximation Algorithm for k-TrWRP(S, P s)
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Approximation Algorithm for k-TrWRP(S, P s)

Theorem 3: Let P be a simple polygon with n=lPl. Let OPT(S,Ps) be the optimal
solution for the k-TrWRP(S,FP,s) and let R be the solution by our algorithm ALG(S,FP.s).
Then R yields an approximation ratio of O( log2 (ISI n) log log (ISl n) log 1Sl).
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Approximation Algorithm for k-TrWRP(S, P s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.
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- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Ceall set of all cuts)

- Build complete graph G on candidate points
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Approximation Algorithm for k-TrWRP(S, P s)
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Approximation Algorithm for k-TrWRP(S, P s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

_ /4 - Build complete graph G on candidate points

’ —
- Gray edges: length of geodesic
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/<\1

|

- Add pink edges: edge cost 0 (any path/tour visiting pi; must visit Ci))

Example: When we visit k33 (in point ps33), we also visit the cuts of ks3, k' and ki>.
Thus, we have edges from to C33, C21, and C1°.
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Approximation Algorithm for k-TrWRP(S, P s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

_ _/'4 - Build complete graph G on candidate points

’ —
- Gray edges: length of geodesic
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Approximation Algorithm for k-TrWRP(S, P s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Ceall set of all cuts)

- Build complete graph G on candidate points

- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi; must visit Ci))

- IV(G)I=0(n 18)
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Approximation Algorithm for k-TrWRP(S, P s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Ceall set of all cuts)

@)
_ _/'4 - Build complete graph G on candidate points

, —
- Gray edges: length of geodesic

| /< ﬁ - Add pink edges: edge cost 0 (any path/tour visiting pi; must visit Ci))
\J

- IV(G)I=0(n 18)
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. . . . — J’l' Jz ~
- Group all candidate points that belong to the same pointin S: Vi = Uj:l pi,; U Uj:l Ci,j
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Approximation Algorithm for k-TrWRP(S, P s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Ceall set of all cuts)

@)
_ _/'4 - Build complete graph G on candidate points

, —
- Gray edges: length of geodesic

| /< ﬁ - Add pink edges: edge cost 0 (any path/tour visiting pi; must visit Ci))
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- IV(G)I=0(n 18)
r

s Ji A
- Group all candidate points that belong to the same pointin S: Vi = Uj:l pi,; U Uj:l Ci,j
- Add yo=s
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Approximation Algorithm for k-TrWRP(S, P s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Call set of all cuts)

_ _/'4 - Build complete graph G on candidate points

’ —
- Gray edges: length of geodesic

" /< ‘ﬁ 1 - Add pink edges: edge cost 0 (any path/tour visiting pi; must visit Ci))
AV - IV(G)I=0(n 1Sl)
! 1 1 Ji A
- Group all candidate points that belong to the same pointin S: Vi = Uj:l pi,; U Uj:l Ci,j
- Add yo=s
. C1,1 .
Here: vy .
\.%’3
y3 candidate points that belong to s3, 0\51 ,
k2 w
3
3 A .
’g T C3,2 fcl,ﬁ
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Approximation Algorithm for k-TrWRP(S, P s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Ceall set of all cuts)

@)
_ _/'4 - Build complete graph G on candidate points

, —
- Gray edges: length of geodesic

| /< ﬁ - Add pink edges: edge cost 0 (any path/tour visiting pi; must visit Ci))
\J

- IV(G)I=0(n 18)
r

s Ji A
- Group all candidate points that belong to the same pointin S: Vi = Uj:l pi,; U Uj:l Ci,j
- Add yo=s

- Approximate a group Steiner tree: C1,1
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Approximation Algorithm for k-TrWRP(S, P s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Ceall set of all cuts)
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- Add yo=s
- Approximate a group Steiner tree: 631\
- Graph, with m vertices and Q vertex subsets (“groups”) Cliqg \0%,3
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Approximation Algorithm for k-TrWRP(S, P s)

- Create a candidate point for each connected component of the k-visibility region of each point in S.

- Candidate points: intersection of geodesics from starting point s to cuts (Ceall set of all cuts)

_ _/'4 - Build complete graph G on candidate points

l
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- Gray edges: length of geodesic

- Add pink edges: edge cost 0 (any path/tour visiting pi; must visit Ci))

- IV(G)I=0(n | S)
s Ji A
- Group all candidate points that belong to the same pointin S: Vi = Uj:l pi,; U Uj:l Ci,j
- Add yo=s
- Approximate a group Steiner tree: 631\
- Graph, with m vertices and Q vertex subsets (“groups”) Cl,aq " \0%,3

- Goal: find a minimum-cost subtree T of the graph /
that contains at least one vertex from each group C1 2
and minimizes the weight of the tree




Approximation Algorithm for k-TrWRP(S, P s)
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Naveen Garg, Goran Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the group Steiner tree problem
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- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (Ceall set of all cuts)
- Build complete graph G on candidate points
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi; must visit Ci))
- IV(G)I=0(n 1Sl)
- Group all candidate points that belong to the same pointin S: Vi = Uj;l pi,; U szzl éi,j
- Add yo=s

- Approximate a group Steiner tree: 63,1\
- Graph, with m vertices and Q vertex subsets (“groups”) Cl,aq " \0%,3
- Goal: find a minimum-cost subtree T of the graph /
that contains at least one vertex from each group C1 2

and minimizes the weight of the tree

- Approximation by [Garg, Konjevod, Ravi '00] with P
approximation ratio O(log2 m log log mlog Q)
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- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (Ceall set of all cuts)
- Build complete graph G on candidate points
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi; must visit Ci))
- IV(G)I=0(n 1Sl)
- Group all candidate points that belong to the same pointin S: Vi = Uj;l pi,; U szzl éi,j
- Add yo=s

- Approximate a group Steiner tree: 63,1\
- Graph, with m vertices and Q vertex subsets (“groups”) Cl,aq " \0%,3
- Goal: find a minimum-cost subtree T of the graph /
that contains at least one vertex from each group C1 2

and minimizes the weight of the tree

- Approximation by [Garg, Konjevod, Ravi '00] with P
approximation ratio O(log2 m log log mlog Q)

- We have m= O(nl1Sl), Q=1SI + 1
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- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (Ceall set of all cuts)
- Build complete graph G on candidate points
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi; must visit Ci))
- IV(G)I=0(n 1Sl)
- Group all candidate points that belong to the same pointin S: Vi = Uj;l pi,; U szzl éi,j
- Add yo=s

- Approximate a group Steiner tree: 63,1\
- Graph, with m vertices and Q vertex subsets (“groups”) Cl,aq " \0%,3
- Goal: find a minimum-cost subtree T of the graph /
that contains at least one vertex from each group C1 2

and minimizes the weight of the tree

- Approximation by [Garg, Konjevod, Ravi '00] with P
approximation ratio O(log2 m log log mlog Q)

- We have m= O(nl1Sl), Q=1SI + 1

- Double this tree and obtain a route R
the route is feasible as we visit one point per y;
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Naveen Garg, Goran Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the group Steiner tree problem
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- Create a candidate point for each connected component of the k-visibility region of each point in S.
- Candidate points: intersection of geodesics from starting point s to cuts (Ceall set of all cuts)
- Build complete graph G on candidate points
- Gray edges: length of geodesic
- Add pink edges: edge cost 0 (any path/tour visiting pi; must visit Ci))
- IV(G)I=0(n 1Sl)
- Group all candidate points that belong to the same pointin S: Vi = U}]z:l pi,; U szzl éi,j
- Add yo=s

- Approximate a group Steiner tree: 63,1\
- Graph, with m vertices and Q vertex subsets (“groups”) Cliqg \0%,3
- Goal: find a minimum-cost subtree T of the graph /
that contains at least one vertex from each group C1 2

and minimizes the weight of the tree

- Approximation by [Garg, Konjevod, Ravi '00] with P
approximation ratio O(log2 m log log mlog Q)

- We have m= O(nl1Sl), Q=1SI + 1

- Double this tree and obtain a route R
the route is feasible as we visit one point per y;

To do: why do we achieve the claimed approximation factor? o



Proof idea: alter(unknown) optimal route OPT(S,FP,s) to pass through points from V(G), and new tour has length at most constant- OPT(S,P.s)

LINKOPING
IIQ“ UNIVERSITY

35



Proof idea: alter(unknown) optimal route OPT(S,FP,s) to pass through points from V(G), and new tour has length at most constant- OPT(S,P.s)
- Identify all cuts of the kVR(si) that OPT(S,P.s) visits—set C (Cc Call)
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- Let 0;; denote the point where OPT(S,P.s) visits c¢;; (first time)
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- Let 0;; denote the point where OPT(S,P.s) visits c¢;; (first time)

- [dentify subset C’of essential cuts (C’cC)

LINKOPING
IIQ“ UNIVERSITY

35



Proof idea: alter(unknown) optimal route OPT(S,FP,s) to pass through points from V(G), and new tour has length at most constant- OPT(S,P.s)
- Identify all cuts of the kVR(si) that OPT(S,P,s) visits—set C (Cc Call)

A cut titi | Into t bpol ;
-Let 0;; denote the point where OPT(S,P,s) visits ci; (first time) Cut ¢ partitions polygon Into two subpolygons

Ps(c)—subpolygon that contains starting point s
- Identify subset C’of essential cuts (C’cC) A cut c¢; dominates ¢, if Ps(c2)CPs(c1)

Essential cut: not dominated by other cut

S
e P, (ca)
C2

/]']
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Proof idea: alter(unknown) optimal route OPT(S,FP,s) to pass through points from V(G), and new tour has length at most constant- OPT(S,P.s)
- Identify all cuts of the kVR(si) that OPT(S,P,s) visits—set C (Cc Call)

- Let 0;; denote the point where OPT(S,P.s) visits c¢;; (first time)

- [dentify subset C’of essential cuts (C’cC)

- Order geodesics to essential cuts by decreasing Euclidean length: 2(g1)=£(g2)=...2£(gic1)
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- Identify all cuts of the kVR(si) that OPT(S,P,s) visits—set C (Cc Call)

- Let 0;; denote the point where OPT(S,P.s) visits c¢;; (first time)

- [dentify subset C’of essential cuts (C’cC)

- Order geodesics to essential cuts by decreasing Euclidean length: 2(g1)=£(g2)=...2£(gic1)
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Proof idea: alter(unknown) optimal route OPT(S,FP,s) to pass through points from V(G), and new tour has length at most constant- OPT(S,P.s)
- Identify all cuts of the kVR(si) that OPT(S,P,s) visits—set C (Cc Call)

- Let 0;; denote the point where OPT(S,P.s) visits c¢;; (first time) 4
- Identify subset C’of essential cuts (C’cC) | 2
- Order geodesics to essential cuts by decreasing Euclidean length: 2(g1)=£(g2)=...2£(gic1) ] & /(7 .6

(@)
J) J
- C — C Q _‘o

-Fort=1 TO IC’| | -%f “

- Identify all Cic C’that gt intersects
-C7« C"Cq

-G¢» set of geodesics that end at cuts in C”
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- Identify all cuts of the kVR(si) that OPT(S,P,s) visits—set C (Cc Call)
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- Order geodesics to essential cuts by decreasing Euclidean length: 2(g1)=£(g2)=...2£(gic1)

- C'eC’

-Fort=1 TO IC’I
- ldentify all Cic C’that gt intersects
-C”7+ C"\Cq

-Gc» set of geodesics that end at cuts in C”

-Claim 1: The geodesics in G- are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.
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Proof idea: alter(unknown) optimal route OPT(S,FP,s) to pass through points from V(G), and new tour has length at most constant- OPT(S,P.s)
- Identify all cuts of the kVR(si) that OPT(S,P,s) visits—set C (Cc Call)

- Let 0;; denote the point where OPT(S,P.s) visits c¢;; (first time)

- [dentify subset C’of essential cuts (C’cC)

- Order geodesics to essential cuts by decreasing Euclidean length: 2(g1)=£(g2)=...2£(gic1)
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-Fort=1 TO IC’I
- ldentify all Cic C’that gt intersects
-C”7+ C"\Cq

-Gc» set of geodesics that end at cuts in C”

-Claim 1: The geodesics in G- are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

-Claim 2: Each essential cut visited by OPT(S,P.s) (each cut in C’) is touched by exactly one of the geodesics.

-The geodesics in G¢» intersect the cuts in C”in points of the type p;j—set P¢
-Build relative convex hull of all o;jand all points in P¢» (relative w.r.t. polygon P): CHp(OPT, P¢»)

-Claim 3: No geodesic can intersect CHp(OPT, P) between a point 0;; and a point p;; on the same cut. Thus, between any pair of points of the type
oijon CHp(OPT, P.»), we have at most two points of P... CHp(OPT, P.») has length at most 3:-[|OPT(S,P,s)ll.
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Proof idea: alter(unknown) optimal route OPT(S,FP,s) to pass through points from V(G), and new tour has length at most constant- OPT(S,P.s)
- Identify all cuts of the kVR(si) that OPT(S,P,s) visits—set C (Cc Call)

- Let 0;; denote the point where OPT(S,P.s) visits c¢;; (first time)

- [dentify subset C’of essential cuts (C’cC)

- Order geodesics to essential cuts by decreasing Euclidean length: 2(g1)=£(g2)=...2£(gic1)

- C'eC’

-Fort=1 TO IC’I
- ldentify all Cic C’that gt intersects
-C”7+ C"\Cq

-Gc» set of geodesics that end at cuts in C”

-Claim 1: The geodesics in G- are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

-Claim 2: Each essential cut visited by OPT(S,P.s) (each cut in C’) is touched by exactly one of the geodesics.

-The geodesics in G¢» intersect the cuts in C”in points of the type p;j—set P¢
-Build relative convex hull of all o;jand all points in P¢» (relative w.r.t. polygon P): CHp(OPT, P¢»)

-Claim 3: No geodesic can intersect CHp(OPT, P) between a point 0;; and a point p;; on the same cut. Thus, between any pair of points of the type
oijon CHp(OPT, P.»), we have at most two points of P... CHp(OPT, P.») has length at most 3:-[|OPT(S,P,s)ll.

-Claim 4: CHp(Pc») is not longer than CHA(OPT, P-») and CHp(Pc») visits one point per yi (except for yo).
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-Claim 2: Each essential cut visited by OPT(S,P.s) (each cut in C’) is touched by exactly one of the geodesics.

-The geodesics in G¢» intersect the cuts in C”in points of the type p;j—set P¢
-Build relative convex hull of all o;jand all points in P¢» (relative w.r.t. polygon P): CHp(OPT, P¢»)

-Claim 3: No geodesic can intersect CHp(OPT, P) between a point 0;; and a point p;; on the same cut. Thus, between any pair of points of the type
oijon CHp(OPT, P.»), we have at most two points of P... CHp(OPT, P.») has length at most 3:-[|OPT(S,P,s)ll.

-Claim 4: CHp(Pc») is not longer than CHA(OPT, P-») and CHp(Pc») visits one point per yi (except for yo).

- To connect s (which may lie in the interior of CHp(P-»), we need to connect s, which costs at most |IOPT(S,P,s)ll.
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Proof idea: alter(unknown) optimal route OPT(S,FP,s) to pass through points from V(G), and new tour has length at most constant- OPT(S,P.s)
- Identify all cuts of the kVR(si) that OPT(S,P,s) visits—set C (Cc Call)

- Let 0;; denote the point where OPT(S,P.s) visits c¢;; (first time)

- [dentify subset C’of essential cuts (C’cC)

- Order geodesics to essential cuts by decreasing Euclidean length: 2(g1)=£(g2)=...2£(gic1)

- C'eC’

-Fort=1 TO IC’I
- ldentify all Cic C’that gt intersects
-C”7+ C"\Cq

-Gc» set of geodesics that end at cuts in C”

-Claim 1: The geodesics in G- are a set of independent geodesics, i.e., no essential cut is visited by two of these geodesics.

-Claim 2: Each essential cut visited by OPT(S,P.s) (each cut in C’) is touched by exactly one of the geodesics.

-The geodesics in G¢» intersect the cuts in C”in points of the type p;j—set P¢
-Build relative convex hull of all o;jand all points in P¢» (relative w.r.t. polygon P): CHp(OPT, P¢»)

-Claim 3: No geodesic can intersect CHp(OPT, P) between a point 0;; and a point p;; on the same cut. Thus, between any pair of points of the type
oijon CHp(OPT, P.»), we have at most two points of P... CHp(OPT, P.») has length at most 3:-[|OPT(S,P,s)ll.

-Claim 4: CHp(Pc») is not longer than CHA(OPT, P-») and CHp(Pc») visits one point per yi (except for yo).

- To connect SéWhICh may lie in the interior of CHp(P.»), we need to connect s costs at most IIOPT$S,P,S)II
IR|| < on - F(IV(G)],IS)IIOPTG (S, P, s)| < oz - f(n|S], [SDICHp(Per )|l < as - f(n|S], |S])|CHp(OPT, Per)|]

: N P
< ay - f(n|S|,|S))||OPT(S, P, s)|| with f(N, M) = log” Nloglog N log M

LINKOPING
IIQ“ UNIVERSITY

35



Open Problem: k-Transmitter Watchmen
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Open Problem k-Transmitter Watchman Routes

» Structural analogue for extensions, which we have for O-transmitters?
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Open Problem k-Transmitter Watchman Routes

» Structural analogue for extensions, which we have for O-transmitters?

A cut c partitions polygon into two subpolygons:
Ps(c)—subpolygon that contains starting point s
A cut c; dominates c; if Ps(c2) CPs(c1)

Essential cut: not dominated by other cut
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» Structural analogue for extensions, which we have for O-transmitters?

A cut c partitions polygon into two subpolygons:
Ps(c)—subpolygon that contains starting point s
A cut c; dominates c; if Ps(c2) CPs(c1)

Essential cut: not dominated by other cut

 We see all of P iff we visit all essential cuts.
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Open Problem k-Transmitter Watchman Routes

» Structural analogue for extensions, which we have for O-transmitters?

S
e P, (ca) i
&

/] =

A cut c partitions polygon into two subpolygons:
Ps(c)—subpolygon that contains starting point s
A cut c; dominates c; if Ps(c2) CPs(c1)

Essential cut: not dominated by other cut

 We see all of P iff we visit all essential cuts.
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Open Problem k-Transmitter Watchman Routes

» Structural analogue for extensions, which we have for O-transmitters?

S
e P, (ca) i
&

/] =

A cut c partitions polygon into two subpolygons:
Ps(c)—subpolygon that contains starting point s
A cut c; dominates c; if Ps(c2) CPs(c1)

Essential cut: not dominated by other cut

= OPEN PROBLEM #2: Is there a structure like
essential cuts that guarantees k-visibility of P when

visited?

 We see all of P iff we visit all essential cuts.
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Outlook

* Improved combinatorial bounds for 2-/k-transmitter covers—in particular:
Open Problem #1. Better upper bounds for simple polygons than the one
stemming from O-transmitters
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Outlook

* Improved combinatorial bounds for 2-/k-transmitter covers—in particular:
Open Problem #1. Better upper bounds for simple polygons than the one
stemming from O-transmitters

* Open Problem #2: Structural analogue for extensions for O-transmitters?

» Approximation for watchmen routes for k-transmitters without given starting
point and/or when all of P should be monitored?
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Outlook

* Improved combinatorial bounds for 2-/k-transmitter covers—in particular:
Open Problem #1. Better upper bounds for simple polygons than the one
stemming from O-transmitters

* Open Problem #2: Structural analogue for extensions for O-transmitters?

» Approximation for watchmen routes for k-transmitters without given starting
point and/or when all of P should be monitored?

» Generally: More structural insights for k-transmitters
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