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We start with 2
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Routing a Maximum Number of Thick Paths through a
Polygonal Domain
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Top
Simple polygon P

Sink I

Source I's

Bottom

Route thick paths from the source to the sink, avoiding all holes (=obstacles)
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Thin path m: simple curve

Let Cr denote the open desk of radius r centered at the origin

For ScR2: (S)'=Sa@C: = {x+y| xeS, yeC} - Minkowski sum

Thick path IT: Minkowski sum of a thin path and a unit disk II=(r)’

S

()@

17.06.2019 RailNorrkoping 2019




LINKOPING
IIQ“ UNIVERSITY

We want:

17.06.2019 RailNorrkoping 2019




LINKOPING
IIQ“ UNIVERSITY

We want:
e Maximum number of non crossing thick paths from source to sink

17.06.2019 RailNorrkoping 2019




LINKOPING
IIQ“ UNIVERSITY

We want:
e Maximum number of non crossing thick paths from source to sink
e Paths should avoid all obstacles

17.06.2019 RailNorrkoping 2019




LINKOPING
IIQ“ UNIVERSITY

We want:

e Maximum number of non crossing thick paths from source to sink
e Paths should avoid all obstacles

e No path runs outside of polygonal domain

17.06.2019 RailNorrkoping 2019




17.06.2019

We want:

e Maximum number of non crossing thick paths from source to sink
e Paths should avoid all obstacles

e No path runs outside of polygonal domain
e non-crossing: ILnIli=2 (interiors disjoint, may share boundary)

<&

RailNorrkoping 2019

LINKOPING
UNIVERSITY




LINKOPING
IIQ“ UNIVERSITY

We want:

e Maximum number of non crossing thick paths from source to sink
e Paths should avoid all obstacles

e No path runs outside of polygonal domain
e non-crossing: ILnIli=2 (interiors disjoint, may share boundary)

e Need some more concepts (Q) perforated at the source and sinks and Riemann
flaps glued to Q), ...)

<&
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Algorithm by Arkin et al. (2010) to compute maximum number of thick paths:

e (Grass-fire analogy

e Free space is grass over which fire travels with speed 1

e Holes are highly flammable: once ignited, fire moves through them with infinite
speed

¢ \\Ve start setting the bottom on fire.

e \Wavefront at time t: boundary of burnt grass by time t

e \\Vhenever fire burns 2 time units w/o hitting hole —> we can route a thick path
through the burnt grass

e Once path has been routed: wavefront is new bottom, and we start over

e Some additional tweaks when we hit a hole after t<?2

N
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e Need a monotone boundary, if not, add “waterfalls”

e Again, let fire burn

¢ |[f we hit a hole in the process, outer-monotonize holes using waterfalls

Yl
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Thick Paths with Limited Slope
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We want:

e Maximum number of non crossing thick paths from source to sink

e Slope should be within a given cone C
- X-monotone h .

- Limited speed = Limited slope
¢ \\We showed how to adapt the waterfall construction to compute the maximum
number of thick non-crossing paths with a given slope range (2C-respecting)

Theorem: A representation of the maximum number of C-respecting thick-non-
crossing paths can be found in O(nh+nlogn) time.
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¢ \We consider the time-space diagram—the geometric representation
¢ I[nserting a new train: Route path from start to end station
e Paths not arbitrarily close = temporal distance (different to trains running in same or OPPOSIte

direction)
e \\Ve think of train paths as “blown-up” line segments = thick paths
e Blown up by temporal distance (can be minimum, or more)
e How to route those thick paths” Concepts from Computational Geometry
e Need to make some adaptations, for example, it stations are lines, no path could cross these
= 1. Show how to construct the appropriate polygonal domain
= 2. Show how to route the maximum number of thick non-crossing paths in that domain:
e Paths should be x-monotone (we cannot go back in time)
e Trains have a maximum speed = paths have a limited slope
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Construction of Polygonal Domain from the Timetable
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If we would define the time windows as
source and sink
= Possible thick paths would correspond

to train paths in a smaller time interval Sa

= Extend the time windows by d/2to both / i 7 —
sides to create I's and I': So _ .
(Ta=[p,pe], Ti=[p,pal) R

Wy Wy
cone: //
thick path:
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If we would define the time windows as
source and sink
= Possible thick paths would correspond

to train paths in a smaller time interval S p3 P4
= Extend the time windows by d/2to both / E 7 <

sides to create I's and I’ S9 _ ,
(Te=[p1,p2], Li=[pz,pa) / / \ /

P1

P2
cone: /

thick path:
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Si+1 7

f allowed cone
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Vertical lines at stations are obstacles But now the time of departure cannot be
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= “Cut” each station open and blow up by
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Vertical lines at stations are obstacles But now the time of departure cannot be
= We need to delete them reached by our paths with limited slope
We need to be able to spend some time at —>We need to shift the consecutive stations
a station to the right, such that this path can be

= “Cut” each station open and blow up by reached with limited slope
vertical distance:
- If the station s has exactly k sidetracks,
we insert a vertical distance of k*d
- If no such limit exists, we can insert a
vertical distance of min{|Ts|+d, [I't|+d}

Si+1 7

f allowed cone
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Sq P3 P4

We need to keep a temporal distance to
the existing trains in the timetable

= “Blow them up” as polygonal obstacles:
Insert the security distance (ds, do)

cone: /

thick path:

In the example we used ds=d, do=d/?
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P3 P4

We need to limit our outer polygon: S3

cone: /
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earliest with highest speead
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We need to limit our outer polygon: 83 P3 P4

e No train can run earlier than departing
earliest with highest speead

= o

e No train can run later than arriving latest
with highest speed

cone: /

thick path:
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We need to limit our outer polygon: S3 | p3 D4
e No train can run earlier than departing
earliest with highest speead

= o

e No train can run later than arriving latest
with highest speed

= ¢
e Some further boundary parts

cone: /

thick path:
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We need to limit our outer polygon: 83 P3 D4
e No train can run earlier than departing
earliest with highest speead

= o

e No train can run later than arriving latest
with highest speed

= ¢

e Some further boundary parts
® |[ntersect holes with boundary

cone: /

thick path:
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N /Z/AY
I VAY4

Wy Wy

cone: /

thick path:

cone: /

thick path:
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Conclusion and Outlook
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e Paths of Different Thickness (different temporal buffers required):
- NP-hard in general
- Same algorithm if the order of paths, that is, the order of trains is given
e Paths with Different Cones (different train types)
- Again possible with the algorithm if the order of paths/order of trains is
given: We simply make the new bottom respecting each consecutive
cone

Outlook

e Application to real-world example
¢ \\Vhat other geometric concepts can be used?
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