Guarding Polyominoes under *k*-hop Visibility or Minimum *k*-Dominating Sets in Grid Graphs

Christiane Schmidt
ICCG 2021, Yazd/Online, February 18, 2021

Agenda

- Motivation and Formal Problem Definition
- NP-Completeness
- Art Gallery Theorems
- Open Problems

Motivation

- Serve a city with carsharing (CS) stations:
 - Demand in granularity of square cells
 - Customers willing to walk a certain distance
 - Same distance bound for the complete city
 - City → Polyomino
 - Walking only within the polyomino
- Goal: Place as few CS stations as possible to serve the complete city

Motivation

- So, what can a station serve?
 - All unit squares of the polyomino reachable when walking when walking inside the polyomino for at most the given walking range
 - Walking range k
 - "Visibility": We can look around corners for $k \ge 2$

k = 5

- Polyomino: connected polygon *P* in plane, formed by joining *m* unit squares on the square lattice
- Dual graph *G_P* is a grid graph
- Unit square $v \in P$ k-hop v is i b l e to unit square $u \in P$, if shortest path from u to v in G_P has length at most k.

Minimum k-hop Guarding Problem (MkGP)

Given: Polyomino P, range k

Find: Minimum cardinality unit-square guard cover in P under k-hop visibility.

Alternative Formulation

Minimum k-dominating Set Problem (MkDSP)

Given: Graph G

Find: Minimum cardinality $D_k \subseteq V(G)$, each graph vertex connected to vertex in D_k with a path of length at most k.

MkDSP is NP-complete in general graphs.

 \rightarrow We want to solve MkDSP in grid graphs

NP-Completeness

Theorem 1: MkGP is NP-complete for k=2 in polyominoes with holes.

- Proof by reduction from PLANAR 3 SAT
- Given a set of guards it can be verified in polynomial time whether each unit square of the polyomino is covered

Variable gadget with two corridor gadgets:

- In case variable appears in clause
- In case negated variable appears in clause

Corridor propagates variable value

"true"

"false"

Corridor bend:

Clause gadget

FFF: 3 witnesses - pairwise disjoint visibility regions

(necessary and sufficient)

FFT:

2 guards (necessary and sufficient)

FTT:

2 guards (necessary and sufficient)

TTT:

2 guards (necessary and sufficient)

No guard can see all three squares

Theorem 1: MkGP is NP-complete for k=2 in polyominoes with holes.

Equivalent formulation:

Minimum 2-dominating Set Problem is NP-complete in grid graphs.

Theorem 2: MkGP is NP-complete for k=1 in polyominoes with holes.

- Proof by reduction from PLANAR 3 SAT
- Given a set of guards it can be verified in polynomial time whether each unit square of the polyomino is covered

Variable gadget with two corridor gadgets:

- In case variable appears in clause
- In case negated variable appears in clause

Corridor bending works as before

Corridor propagates variable value

"true"

"false"

Clause gadget

FFF: 3 witnesses - pairwise disjoint visibility regions

FFT:

FTT:

3 guards (necessary and sufficien

2 guards (necessary and sufficient) 2 guards (necessary and sufficient)

TTT:

2 guards (necessary and sufficient)

2 witnesses pairwise disjoint visibility regions

 v_3 v_1 v_2 $(v_1 \lor v_2 \lor \overline{v_3})$

Art Gallery Theorems

Theorem 3: There exist simple polyominoes with m unit squares that require $\lfloor \frac{m}{k+1} \rfloor$ guards to cover their interior under k-hop visibility.

k=6

m not divisible by *k+1*

 \rightarrow we add $x=(m \mod (k+1))$ unit squares to the right of the shaft

Theorem 4: $\lfloor \frac{m}{k+1} \rfloor$ guards are always sufficient and sometimes necessary to cover a polyomino with m unit squares under k-hop visibility for $k \in \{1,2\}$.

Proof:

k=1:

- Use dual grid graph *G*_P
- Compute a maximum matching M in the dual grid graph G_P
- Every vertex in G_P that is not matched is adjacent to matched vertices only
- For each matching edge {v,w} unmatched vertices only adjacent to v or w
- For each matching edge: place guard at unit square adjacent to unmatched vertices (if any)

Theorem 4: $\lfloor \frac{m}{k+1} \rfloor$ guards are always sufficient and sometimes necessary to cover a polyomino with m unit squares under k-hop visibility for $k \in \{1,2\}$.

Proof:

k=2:

- Again: Compute a maximum matching M in the dual grid graph G_P
- Graph G_M based on M:
 - Vertex for each matching edge
 - Vertex for each unmatched vertex
 - $\{v,v'\}\in V(G_M)$ if:
 - For $v=v_{\{u,u'\}}$, $v'=v'_{\{w,w'\}}$: if at least one of the edges $\{u,w\}$, $\{u,w'\}$, $\{u',w\}$ or $\{u',w'\}$ $\in E(G_P)$
 - For $v=v_{\{u,u'\}}$, $v'=v'_w$: if at least one of $\{u,w\}$ or $\{u,w'\} \in E(G_P)$
- Compute maximum matching M' in G_M

Theorem 4: guards are always sufficient and sometimes necessary to cover a

polyomino with m unit squares under k-hop visibility for $k \in \{1,2\}$.

Proof:

k=2: Case distinction

 $e=\{v_{\{u,u'\}}, v_{\{w,w'\}}\} \in M'$ not adjacent to any other unmatched vertex Single guard covers 4 unit squares

e= $\{v_{\{u,u'\}}, v_{\{w,w'\}}\} \in M'$ adjacent to unmatched vertices, all of which represent one vertex from G_{P} . W.l.o.g. all unmatched vertices adjacent to $v_{\{u,u'\}}$

 $\{u,w\} \in E(G_P)$ or $\{u,w'\} \in E(G_P)$, but $\{u',w\} \notin E(G_P)$ and $\{u',w'\} \notin E(G_P)$ Single guard on u covers u, u', w, w' and all unmatched vertices adjacent to covered $v_{\{u,u'\}}$ Single guard covers at least 5 unit squares

 $\{u,w\} \in E(G_P) \text{ and } \{u',w'\} \in E(G_P) \text{ (or } \{u',w\} \in E(G_P) \text{ and } \{u',w'\} \in E(G_P))$ Single guard on u (or u') covers u, u', w, w' and all unmatched vertices adjacent to covered $v_{\{u,u'\}}$ Single guard covers at least 5 unit squares

Two guards cover at least 6 unit squares

Single guard covers 3 unit squares

- → Each guard covers at least 3 unit squares
- $\rightarrow \lfloor m/(k+1) \rfloor = \lfloor m/3 \rfloor$ guards always sufficient

Single guard covers at least 4 unit squares

Single guard covers at least 5 unit squares

Single guard covers at least 5 unit squares

Two guards cover at least 6 unit squares

Single guard covers at least 5 unit squares

Open Problems

Open Problems

- Computational complexity in simple polyominoes (grid graphs without holes)
- Upper bounds on the number of guards for $k \ge 3$
- Approximation algorithms (k=1: trivial 5/2-approximation)

THANKS

