Rectangular Spiral Galaxies are Still Hard

★Triangulation

- **★**Triangulation
- ★ Partition rectangular polygons into rectangles

- **★**Triangulation
- **★** Partition rectangular polygons into rectangles
 - * Minimum number of rectangles, simple polygon: O(n) [Liou, Tan, Lee, 1989]

- **★**Triangulation
- **★** Partition rectangular polygons into rectangles
 - * Minimum number of rectangles, simple polygon: O(n) [Liou, Tan, Lee, 1989]
 - * Minimum number of rectangles, polygons with holes: O(n^{3/2} log n) [Soltan, Gorpinevich, 1993]

- **★**Triangulation
- ★ Partition rectangular polygons into rectangles
 - * Minimum number of rectangles, simple polygon: O(n) [Liou, Tan, Lee, 1989]
 - * Minimum number of rectangles, polygons with holes: O(n3/2 log n) [Soltan, Gorpinevich, 1993]
 - * #rectangles = r-l-h+1 (r=#reflex vertices, h=#holes, l=#maximum number nonintersecting chords)[Lipski, Lodi, Luccio, Mugnai, Pagli, 1979], [Ohtsuki, 1982], [Ferrari, Sankar, Slansky, 1984]

- *Triangulation
- **★** Partition rectangular polygons into rectangles
 - * Minimum number of rectangles, simple polygon: O(n) [Liou, Tan, Lee, 1989]
 - * Minimum number of rectangles, polygons with holes: O(n^{3/2} log n) [Soltan, Gorpinevich, 1993]
 - * #rectangles = r-l-h+1 (r=#reflex vertices, h=#holes, l=#maximum number nonintersecting chords)[Lipski, Lodi, Luccio, Mugnai, Pagli, 1979], [Ohtsuki, 1982], [Ferrari, Sankar, Slansky, 1984]
 - * Minimum number of squares: NP-hard

- *Triangulation
- **★** Partition rectangular polygons into rectangles
 - * Minimum number of rectangles, simple polygon: O(n) [Liou, Tan, Lee, 1989]
 - * Minimum number of rectangles, polygons with holes: O(n^{3/2} log n) [Soltan, Gorpinevich, 1993]
 - * #rectangles = r-l-h+1 (r=#reflex vertices, h=#holes, l=#maximum number nonintersecting chords)[Lipski, Lodi, Luccio, Mugnai, Pagli, 1979], [Ohtsuki, 1982], [Ferrari, Sankar, Slansky, 1984]
 - * Minimum number of squares: NP-hard
 - * Minimum edge-length rectangular partition: polytime in simple polygons, NP-hard in polygons with holes [Lingas, Pinter, Rivest, Shamir, 1982]

- **★**Triangulation
- **★** Partition rectangular polygons into rectangles
 - * Minimum number of rectangles, simple polygon: O(n) [Liou, Tan, Lee, 1989]
 - * Minimum number of rectangles, polygons with holes: O(n^{3/2} log n) [Soltan, Gorpinevich, 1993]
 - * #rectangles = r-l-h+1 (r=#reflex vertices, h=#holes, l=#maximum number nonintersecting chords)[Lipski, Lodi, Luccio, Mugnai, Pagli, 1979], [Ohtsuki, 1982], [Ferrari, Sankar, Slansky, 1984]
 - * Minimum number of squares: NP-hard
 - * Minimum edge-length rectangular partition: polytime in simple polygons, NP-hard in polygons with holes [Lingas, Pinter, Rivest, Shamir, 1982]
- **★** Partition rectangular polygons into polygons with at most 8 vertices: [3n+4/16] polygons with O(n) algorithm [Győri, Mezei, 2016]

2

★ Partition into "similar" polygons:

- ★ Partition into "similar" polygons:
 - * Given: Polygon P, integer k

- ★ Partition into "similar" polygons:
 - * Given: Polygon P, integer k
 - * Goal: Partition P into k polygons P₁, ..., P_k, all polygons are *similar* to each other

Several versions, most common: homothetic—same size, can mirror

- ★ Partition into "similar" polygons:
 - * Given: Polygon P, integer k
 - * Goal: Partition P into k polygons P₁, ..., P_k, all polygons are *similar* to each other
 - * k=2: O(n³) algorithm for P₁, P₂ possibly nonsimple [El-Khechen, Fevens, Iacano, Rote, 2008]

Several versions, most common: homothetic—same size, can mirror

- ★ Partition into "similar" polygons:
 - * Given: Polygon P, integer k
 - * Goal: Partition P into k polygons P₁, ..., P_k, all polygons are *similar* to each other
 - * k=2: O(n³) algorithm for P₁, P₂ possibly nonsimple [El-Khechen, Fevens, Iacano, Rote, 2008]
 - * Fission puzzle

Several versions, most common: homothetic—same size, can mirror

- ★ Partition into "similar" polygons:
 - * Given: Polygon P, integer k
 - * Goal: Partition P into k polygons P₁, ..., P_k, all polygons are *similar* to each other
 - * k=2: O(n³) algorithm for P₁, P₂ possibly nonsimple [El-Khechen, Fevens, Iacano, Rote, 2008]
 - * Fission puzzle
 - * Also exists as a puzzle for polyominoes: http://puzzlepicnic.com/genre?id=47

Several versions, most common: homothetic—same size, can mirror

- ★ Partition into "similar" polygons:
 - * Given: Polygon P, integer k
 - * Goal: Partition P into k polygons P₁, ..., P_k, all polygons are *similar* to each other
 - * k=2: O(n³) algorithm for P₁, P₂ possibly nonsimple [El-Khechen, Fevens, Iacano, Rote, 2008]
 - * Fission puzzle
 - * Also exists as a puzzle for polyominoes: http://puzzlepicnic.com/genre?id=47
- ★ Rectangular polygons → let's look at polyominoes

Several versions, most common: homothetic—same size, can mirror

★ Pencil-and-paper puzzle from Nikoli ("Tentai Show")

- ★ Pencil-and-paper puzzle from Nikoli ("Tentai Show")
- **★** Played on square grid

- ★ Pencil-and-paper puzzle from Nikoli ("Tentai Show")
- ★ Played on square grid
- * Given: centers (on grid vertices, square centers, or edge midpoints)

- ★ Pencil-and-paper puzzle from Nikoli ("Tentai Show")
- ★ Played on square grid
- ★ Given: centers (on grid vertices, square centers, or edge midpoints)
- ★ Goal:

- ★ Pencil-and-paper puzzle from Nikoli ("Tentai Show")
- **★** Played on square grid
- ★ Given: centers (on grid vertices, square centers, or edge midpoints)
- ★ Goal:
 - * Partition grid into polyominoes

- ★ Pencil-and-paper puzzle from Nikoli ("Tentai Show")
- **★** Played on square grid
- ★ Given: centers (on grid vertices, square centers, or edge midpoints)
- ★ Goal:
 - * Partition grid into polyominoes
 - * Each polyomino contains one center

- ★ Pencil-and-paper puzzle from Nikoli ("Tentai Show")
- **★** Played on square grid
- * Given: centers (on grid vertices, square centers, or edge midpoints)
- ★ Goal:
 - * Partition grid into polyominoes
 - * Each polyomino contains one center
 - * Each polyomino is 180° symmetric about its center

- ★ Pencil-and-paper puzzle from Nikoli ("Tentai Show")
- **★** Played on square grid
- ★ Given: centers (on grid vertices, square centers, or edge midpoints)
- ★ Goal:
 - * Partition grid into polyominoes
 - * Each polyomino contains one center
 - * Each polyomino is 180° symmetric about its center

Also gives us a tiling using the solution galaxies as polyominoes

- ★ Pencil-and-paper puzzle from Nikoli ("Tentai Show")
- **★** Played on square grid
- * Given: centers (on grid vertices, square centers, or edge midpoints)
- ★ Goal:
 - * Partition grid into polyominoes
 - * Each polyomino contains one center
 - * Each polyomino is 180° symmetric about its center
- ★ Do you want to solve some puzzles?

http://www.nikoli.co.jp/en/puzzles/astronomical_show.html

http://puzzlepicnic.com/genre?id=17

https://www.gmpuzzles.com/blog/spiral-galaxies-rules-info/

Also gives us a tiling using the solution galaxies as polyominoes

* NP-complete for general polyomino shapes [Friedman, 2002]

- * NP-complete for general polyomino shapes [Friedman, 2002]
- **★** NP-hard for Spiral Galaxies of size ≤ 7 [Fertin, Jarnshidi, Komusiewicz, 2015]

- * NP-complete for general polyomino shapes [Friedman, 2002]
- **★** NP-hard for Spiral Galaxies of size ≤ 7 [Fertin, Jarnshidi, Komusiewicz, 2015]
- **★** Today: all Spiral Galaxies are rectangles

- * NP-complete for general polyomino shapes [Friedman, 2002]
- **★** NP-hard for Spiral Galaxies of size ≤ 7 [Fertin, Jarnshidi, Komusiewicz, 2015]
- ★ Today: all Spiral Galaxies are rectangles

Generating Spiral Galaxies Puzzles

Generating Spiral Galaxies Puzzles

* What do we want to optimize when we generate a puzzle?

Generating Spiral Galaxies Puzzles

- * What do we want to optimize when we generate a puzzle?
- ★ Interesting optimization question for a coloured version:

- ★ What do we want to optimize when we generate a puzzle?
- * Interesting optimization question for a coloured version:
 - * Some centers are coloured black

- ★ What do we want to optimize when we generate a puzzle?
- * Interesting optimization question for a coloured version:
 - * Some centers are coloured black
 - * Polyominoes with coloured centers yield picture/letter

- * What do we want to optimize when we generate a puzzle?
- * Interesting optimization question for a coloured version:
 - * Some centers are coloured black
 - * Polyominoes with coloured centers yield picture/letter
 - * Trivial: we could just place a center in each grid cell

- * What do we want to optimize when we generate a puzzle?
- * Interesting optimization question for a coloured version:
 - * Some centers are coloured black
 - * Polyominoes with coloured centers yield picture/letter
 - * Trivial: we could just place a center in each grid cell
 - → Minimum number of centers, such that there exist Spiral Galaxies that exactly cover a given shape

Results

- ★ Determining if a Spiral Galaxies board is solvable with only rectangular galaxies is NP-complete.
- ★ Determining if a Spiral Galaxies board is solvable with only 1x1, 1x3 and 3x1 galaxies is NP-complete and counting the number of solutions is #P-complete and ASP-complete.
- ★ Non-crossing matching in squared grid graphs is NP-complete.
- ★ Generating puzzles: Minimizing the number of centers on a Spiral Galaxies board, such that Spiral Galaxies with these centers exactly cover a given shape S is NP-complete.

Results

- ★ Determining if a Spiral Galaxies board is solvable with only rectangular galaxies is NP-complete.
- ★ Determining if a Spiral Galaxies board is solvable with only 1x1, 1x3 and 3x1 galaxies is NP-complete and counting the number of solutions is #P-complete and ASP-complete.
- ★ Non-crossing matching in squared grid graphs is NP-complete.
- ★ Generating puzzles: Minimizing the number of centers on a Spiral Galaxies board, such that Spiral Galaxies with these centers exactly cover a given shape S is NP-complete.

Results

★ Determining if a Spiral Galaxies board is solvable with only rectangular galaxies is NP-complete.

- ★ Determining if a Spiral Galaxies board is solvable with only 1x1, 1x3 and 3x1 galaxies is NP-complete and counting the number of solutions is #P-complete and ASP-complete.
- ★ Non-crossing matching in squared grid graphs is NP-complete.
- ★ Generating puzzles: Minimizing the number of centers on a Spiral Galaxies board, such that Spiral Galaxies with these centers exactly cover a given shape S is NP-complete.

★ Reduction from PLANAR 1-IN-3 SAT

- ★ Reduction from PLANAR 1-IN-3 SAT
- **★** Instance F of PLANAR 1-IN-3 SAT → Spiral Galaxies board B

- ★ Reduction from PLANAR 1-IN-3 SAT
- **★** Instance F of PLANAR 1-IN-3 SAT → Spiral Galaxies board B
- **★** One-to-one correspondence of solutions of B and solutions of F

- ★ Reduction from PLANAR 1-IN-3 SAT
- **★** Instance F of PLANAR 1-IN-3 SAT → Spiral Galaxies board B
- **★** One-to-one correspondence of solutions of B and solutions of F
- → #P-complete and ASP-complete

- **★** Reduction from PLANAR 1-IN-3 SAT
- **★** Instance F of PLANAR 1-IN-3 SAT → Spiral Galaxies board B
- ★ One-to-one correspondence of solutions of B and solutions of F
- → #P-complete and ASP-complete
- ★ Disks with distance 2 can be connected by an edge

- ★ Reduction from PLANAR 1-IN-3 SAT
- **★** Instance F of PLANAR 1-IN-3 SAT → Spiral Galaxies board B
- **★** One-to-one correspondence of solutions of B and solutions of F
- → #P-complete and ASP-complete
- ★ Disks with distance 2 can be connected by an edge
- * Centers II in middle of each potential edge

- ★ Reduction from PLANAR 1-IN-3 SAT
- **★** Instance F of PLANAR 1-IN-3 SAT → Spiral Galaxies board B
- ★ One-to-one correspondence of solutions of B and solutions of F
- → #P-complete and ASP-complete
- ★ Disks with distance 2 can be connected by an edge
- * Centers in middle of each potential edge

- ★ Reduction from PLANAR 1-IN-3 SAT
- **★** Instance F of PLANAR 1-IN-3 SAT → Spiral Galaxies board B
- ★ One-to-one correspondence of solutions of B and solutions of F
- → #P-complete and ASP-complete
- ★ Disks with distance 2 can be connected by an edge
- * Centers II in middle of each potential edge

Variable loop

Variable loop

Two possible states—"true" and "false":

Negation gadget

Clause gadget

3 variable loops

Clause gadget

3 variable loops

Clause gadget

3 variable loops

Can be solved for the letters A, B, H, P, R, S, Z (+E for disconnected galaxies)

SCAN ME

