Computational Complexity and Bounds for Norinori and LITS

Michael Biro, Christiane Schmidt

LINKOPING UNIVERSITY




Norinori? LITS?

EuroCG 2017 2



Norinori? LITS?
e Pencil-and-paper puzzles

EuroCG 2017 2



Norinori? LITS?
e Pencil-and-paper puzzles
e Made popular by Japanese publisher Nikoli

EuroCG 2017 2



Norinori? LITS?

e Pencil-and-paper puzzles

e Made popular by Japanese publisher Nikoli

e (Norinori = Dominnocuous, LITS = Nuruomino)

EuroCG 2017 2



Norinori? LITS?

e Pencil-and-paper puzzles

e Made popular by Japanese publisher Nikoli

e (Norinori = Dominnocuous, LITS = Nuruomino)

e Both played on mxn square gird partitioned into connected polyomino regions

EuroCG 2017 2



Norinori? LITS?

e Pencil-and-paper puzzles

e Made popular by Japanese publisher Nikoli

e (Norinori = Dominnocuous, LITS = Nuruomino)

e Both played on mxn square gird partitioned into connected polyomino regions
e Place black squares in the polyomino regions

EuroCG 2017 2



Norinori

EuroCG 2017 3



Norinori

Place black squares in the polyominoes, such that the final board satisfies

EuroCG 2017



Norinori

Place black squares in the polyominoes, such that the final board satisfies
e Fach black square has exactly one black neighbour.

EuroCG 2017



Norinori

Place black squares in the polyominoes, such that the final board satisfies
e Fach black square has exactly one black neighbour.
® There are exactly 2 black squares in each polyomino region.

EuroCG 2017



Norinori

Place black squares in the polyominoes, such that the final board satisfies
e Fach black square has exactly one black neighbour. olle
® There are exactly 2 black squares in each polyomino region.
O O

OO0

EuroCG 2017 4



Norinori

Place black squares in the polyominoes, such that the final board satisfies

0|0

e Fach black square has exactly one black neighbour.
® There are exactly 2 black squares in each polyomino region.

EuroCG 2017

O

OO0

O




Norinori

Place black squares in the polyominoes, such that the final board satisfies

0|0

e Fach black square has exactly one black neighbour.
® There are exactly 2 black squares in each polyomino region.

EuroCG 2017

O

OO0

O




Norinori

Place black squares in the polyominoes, such that the final board satisfies

0|0

e Fach black square has exactly one black neighbour.
® There are exactly 2 black squares in each polyomino region.

EuroCG 2017

O

OO0

O




Norinori

Place black squares in the polyominoes, such that the final board satisfies

0|0

e Fach black square has exactly one black neighbour.
® There are exactly 2 black squares in each polyomino region.

EuroCG 2017

O

OO0

O




Norinori

Place black squares in the polyominoes, such that the final board satisfies

0|0

e Fach black square has exactly one black neighbour.
® There are exactly 2 black squares in each polyomino region.

EuroCG 2017

O

OO0

O




Norinori

Place black squares in the polyominoes, such that the final board satisfies

0|0

e Fach black square has exactly one black neighbour.
® There are exactly 2 black squares in each polyomino region.

EuroCG 2017

O

OO0

O




Norinori

Place black squares in the polyominoes, such that the final board satisfies

0|0

e Fach black square has exactly one black neighbour.

® There are exactly 2 black squares in each polyomino region.

EuroCG 2017

O

OO0

O




Norinori

Place black squares in the polyominoes, such that the final board satisfies

0|0

e Fach black square has exactly one black neighbour.
® There are exactly 2 black squares in each polyomino region.

EuroCG 2017

O

OO0

O




Norinori

Place black squares in the polyominoes, such that the final board satisfies

0|0

e Fach black square has exactly one black neighbour.
® There are exactly 2 black squares in each polyomino region.

EuroCG 2017

O

OO0

O




Norinori

Place black squares in the polyominoes, such that the final board satisfies

0|0

e Fach black square has exactly one black neighbour.
® There are exactly 2 black squares in each polyomino region.

EuroCG 2017

O

OO0

O




Norinori

Place black squares in the polyominoes, such that the final board satisfies

0|0

e Fach black square has exactly one black neighbour.
® There are exactly 2 black squares in each polyomino region.

EuroCG 2017

O

OO0

O




Norinori

Place black squares in the polyominoes, such that the final board satisfies

0|0

e Fach black square has exactly one black neighbour.
® There are exactly 2 black squares in each polyomino region.

EuroCG 2017

O

OO0

O




Norinori

Place black squares in the polyominoes, such that the final board satisfies

0|0

e Fach black square has exactly one black neighbour.
® There are exactly 2 black squares in each polyomino region.

0O O

OO0

EuroCG 2017



Norinori

Place black squares in the polyominoes, such that the final board satisfies

0|0

e Fach black square has exactly one black neighbour.
® There are exactly 2 black squares in each polyomino region.

0O O

OO0

ol

Olo
Og
ol o

Of O
o
€
o
€
O
0.0

EuroCG 2017



Norinori

Place black squares in the polyominoes, such that the final board satisfies

0|0

e Fach black square has exactly one black neighbour.
® There are exactly 2 black squares in each polyomino region.

0O O

OO0

EEEE
o] |o/0/0

[}
00
O

EuroCG 2017



Norinori

Place black squares in the polyominoes, such that the final board satisfies

0|0

e Fach black square has exactly one black neighbour.
® There are exactly 2 black squares in each polyomino region.

0O O

OO0

EuroCG 2017



Norinori

Place black squares in the polyominoes, such that the final board satisfies

e Fach black square has exactly one black neighbour. relle
® There are exactly 2 black squares in each polyomino region.
O O
O 0

EuroCG 2017




Norinori

Theorem 1:
Determining if a Norinori board is solvable is NP-complete and
counting the number of solutions is #P-complete.

EuroCG 2017 5



Norinori

Theorem 1:
Determining if a Norinori board is solvable is NP-complete and
counting the number of solutions is #P-complete.

Proof by reduction from PLANAR 1-IN-3-SAT:

EuroCG 2017 5



Norinori

Theorem 1:
Determining if a Norinori board is solvable is NP-complete and
counting the number of solutions is #P-complete.

Proof by reduction from PLANAR 1-IN-3-SAT:
e (G: incidence graph of an instance F of PLANAR 1-IN-3-SAT

EuroCG 2017 5



Norinori

Theorem 1:
Determining if a Norinori board is solvable is NP-complete and
counting the number of solutions is #P-complete.

Proof by reduction from PLANAR 1-IN-3-SAT:
e (G: incidence graph of an instance F of PLANAR 1-IN-3-SAT
e \We use rectilinear embedding of G and turn it into Norinori board B

EuroCG 2017 5



Norinori

Theorem 1:
Determining if a Norinori board is solvable is NP-complete and
counting the number of solutions is #P-complete.

Proof by reduction from PLANAR 1-IN-3-SAT:

e (G: incidence graph of an instance F of PLANAR 1-IN-3-SAT

e \We use rectilinear embedding of G and turn it into Norinori board B
e Solution to B yields a solution to F (=» NP-hardness)

EuroCG 2017 5



Norinori

Theorem 1:
Determining if a Norinori board is solvable is NP-complete and
counting the number of solutions is #P-complete.

Proof by reduction from PLANAR 1-IN-3-SAT:

e (G: incidence graph of an instance F of PLANAR 1-IN-3-SAT

e \We use rectilinear embedding of G and turn it into Norinori board B

e Solution to B yields a solution to F (=» NP-hardness)

e (Given a solution to an mxn Norinori board, it can be verified in polynomial time

EuroCG 2017 5



Norinori

Theorem 1:
Determining if a Norinori board is solvable is NP-complete and
counting the number of solutions is #P-complete.

Proof by reduction from PLANAR 1-IN-3-SAT:

e (G: incidence graph of an instance F of PLANAR 1-IN-3-SAT

We use rectilinear embedding of G and turn it into Norinori board B

Solution to B yields a solution to F (=» NP-hardness)

Given a solution to an mxn Norinori board, it can be veritied in polynomial time
One-to-one correspondence between solutions of B and solutions of F (=»#P-
complete)

EuroCG 2017 5



Norinori

Theorem 1:
Determining if a Norinori board is solvable is NP-complete and
counting the number of solutions is #P-complete.

Proof by reduction from PLANAR 1-IN-3-SAT:

e (G: incidence graph of an instance F of PLANAR 1-IN-3-SAT

We use rectilinear embedding of G and turn it into Norinori board B

Solution to B yields a solution to F (=» NP-hardness)

Given a solution to an mxn Norinori board, it can be veritied in polynomial time
One-to-one correspondence between solutions of B and solutions of F (=»#P-
complete)

Variable loop:

EuroCG 2017 5



Norinori

Theorem 1:
Determining if a Norinori board is solvable is NP-complete and
counting the number of solutions is #P-complete.

Proof by reduction from PLANAR 1-IN-3-SAT:

e (G: incidence graph of an instance F of PLANAR 1-IN-3-SAT

We use rectilinear embedding of G and turn it into Norinori board B

Solution to B yields a solution to F (=» NP-hardness)

Given a solution to an mxn Norinori board, it can be veritied in polynomial time
One-to-one correspondence between solutions of B and solutions of F (=»#P-
complete)

Variable loop:

EuroCG 2017



Norinori

Theorem 1:
Determining if a Norinori board is solvable is NP-complete and
counting the number of solutions is #P-complete.

Proof by reduction from PLANAR 1-IN-3-SAT:

e (G: incidence graph of an instance F of PLANAR 1-IN-3-SAT

We use rectilinear embedding of G and turn it into Norinori board B

Solution to B yields a solution to F (=» NP-hardness)

Given a solution to an mxn Norinori board, it can be veritied in polynomial time
One-to-one correspondence between solutions of B and solutions of F (=»#P-
complete)

Variable loop:

“true”

EuroCG 2017




Norinori

Theorem 1:
Determining if a Norinori board is solvable is NP-complete and
counting the number of solutions is #P-complete.

Proof by reduction from PLANAR 1-IN-3-SAT:

e (G: incidence graph of an instance F of PLANAR 1-IN-3-SAT

We use rectilinear embedding of G and turn it into Norinori board B

Solution to B yields a solution to F (=» NP-hardness)

Given a solution to an mxn Norinori board, it can be veritied in polynomial time
One-to-one correspondence between solutions of B and solutions of F (=»#P-
complete)

Fixes squares in center face,
Variable loop: and makes third solution to the loop infeasible

“true”

EuroCG 2017




Norinori

Theorem 1:
Determining if a Norinori board is solvable is NP-complete and
counting the number of solutions is #P-complete.

Proof by reduction from PLANAR 1-IN-3-SAT:

e (G: incidence graph of an instance F of PLANAR 1-IN-3-SAT

We use rectilinear embedding of G and turn it into Norinori board B

Solution to B yields a solution to F (=» NP-hardness)

Given a solution to an mxn Norinori board, it can be veritied in polynomial time
One-to-one correspondence between solutions of B and solutions of F (=»#P-
complete)

Fixes squares in center face,
Variable loop: and makes third solution to the loop infeasible

“true”

EuroCG 2017




Norinori

Face gadget, for any open region:

EuroCG 2017 6



Norinori

Face gadget, for any open region:

Corridor gadget, propagates variable value:

<
Q)]
-
)
]
-
o}
&
D

EuroCG 2017 6



Norinori

Face gadget, for any open region:

Corridor gadget, propagates variable value:

“false”

O 0
OO0

OO
OO

O 0
OO0

EuroCG 2017




Norinori

Face gadget, for any open region:

Corridor gadget, propagates variable value:

“false”

OO0

OO

OO0

EuroCG 2017




Norinori

Face gadget, for any open region:

Corridor gadget, propagates variable value:

“false”

OO0

OO

OO0

Wires for both variable and its negation: connect to appropriate place of variable loop.
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Corridor gadget: linearly repeat this pattern.
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NOT gadget:

Must be filled
with an S.

The wires connected by the gadget always satisfy opposite truth assignments.

Bend gadget:

Must be filled
with a T.

, The other T wouldn't connect
to the incoming |.

Other | would leave S disconnected. = | would result in 2x2 block.
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At-most gadget (Two C-shaped regions connect to variable corridors):

é,

Both variables truth setting Both variables truth setting Only one variable
Clause gadget: that fulfils the clause. that does not fulfil the clause. fulfils the clause.
HEN | | | | mamEE @000
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can be connected.
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1-in-3 gadget:

x| clause

at most

At-most gadget (Two C-shaped regions connect to variable corridors):

Both variables truth setting Both variables truth setting Only one variable
Clause gadget: that fulfils the clause. that does not fulfil the clause. fulfils the clause.

- !

N =
| | | | ,,j""I 'ifi'ZII'fﬁ' ,
All variables do not fulfil the clause At least one fulfils the clause
=» no tetromino in the =»> An | can connect to other
can be connected. tetrominoes.
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THANK YOU.

*Determining if a Norinori board is solvable is NP-complete and
counting the number of solutions is #P-complete.

*Determining if a LITS board is solvable is NP-complete and
counting the number of solutions is #P-complete.

*Bounds on the minimum number of regions among all nxm
Norinori/LITS boards with unique solutions.
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