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 Monotonicity 
➡ Points on T are totally ordered wrt to x-coordinate: p<q .
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Terrain T

Altitude line A

 x-monotone chain of line segments in R2 
defined by its vertices V(T) = { v1 , . . . , vn}

 A point p ∈ A sees  or covers q ∈ T  if and only if pq is nowhere below T  (i.e. pq lies on or above T ). 
VT(p) is the visibility region of p with VT(p) := {q∈T | p  sees q} .
 For G⊆A VT(G) := ∪g∈G VT(g).

p ∈ A

q ∈ T

Altitude Terrain Guarding Problem (ATGP) ATGP(T,A) 
Given: a terrain T and an altitude line A .
A minimum set of guards that see all of T. 
(Formally: A guard set G⊂A  is optimal w.r.t. ATGP(T,A) if G is feasible, that is, T⊆VT(G) , and
|G| = OPT(T,A) := min{|C| | C⊂A  is feasible w.r.t. ATGP(T,A)} .)
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uni-monotone polygon?

uni-monotone polygon

H

p ∈ P

VP(p) - visibility polygon

Formally: 
Art Gallery Problem (AGP) AGP(G,W)
Given: a polygon P and sets of guard candidates and points 
to cover G,W⊆P. 
A minimum guard set C⊆G that covers W (that is, W⊆VP(C)).
We want to solve AGP(P,P).

LC(P)
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 Let P  be a uni-monotone polygon, let G  be a guard set with g∈H ∀g∈G
 that covers LC(P), that is, LC(P)⊂VP(G) . Then G covers all of P, that is, P⊆VP(G).

Proof: Assume p∈P, p∉LC(P), p∉VP(G)

➜ATGP and AGP for uni-monotone polygons equivalent
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Our Problems:
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Altitude Terrain Guarding Problem (ATGP)
Given: a terrain T and an altitude line A .
A minimum set of guards that see all of T.
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We show:
- A polytime algorithm for AGTP and AGP in uni-monotone polygons
- Uni-monotone polygons are perfect     - first non-trivial classperfect ?

A set W⊂P (W⊂T ) is a witness set  if ∀wi≠wj ∈W  we have VP(wi)∩VP(wj) = ∅. 
A maximum witness set Wopt  is a witness set of maximum cardinality, |Wopt| = max{|W|: witness set W}. 
A polygon class P is perfect if 
cardinality of an optimum guard set = cardinality of a maximum witness set     ∀P∈P
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How do we preprocess our terrain to easily identify the point on A that we need to add to C when we split an 
edge?
• Sweep rightmost to leftmost vertex
• For each vertex we shoot ray through all vertices to its left
• Where rays hit terrain: mark points
• O(n2) preprocessed intervals
• For each mark point m remember the rightmost of the two ray-vertices vm
• When placing guard g splits edge e, and we are left with interval e’⊂e:

‣ Identify mark point, me’, to the right of e’
‣ Shoot ray r from right endpoint of e’ through vme’

‣ Intersection point of r and A is the new closing point
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Theorem 2: The set G output by the algorithm is optimal.

Proof idea: If we can find a witness set with |W|=|G|, G is optimal.
Let Si be the strip of all points with x -coordinates between x(gi−1) + 𝜀  and x(gi).
We place a witness wi per guard gi such that  VT(wi)⊆Si ∀i.

 e’=[vj, q) for some point q∈ej, q≠vj+1  
we place witness at q𝜀, a point 𝜀 to the left of q on T

 Theorem 3: Uni-monotone polygons are perfect.
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Lemma 1: The set G output by the algorithm is feasible.  

Theorem 2: The set G output by the algorithm is optimal. 

Proof idea: If we can find a witness set with |W|=|G|, G is optimal. 
Let Si be the strip of all points with x -coordinates between x(gi−1) + 𝜀  and x(gi). 
We place a witness wi per guard gi such that  VT(wi)⊆Si ∀i.

 e’=[vj, q) for some point q∈ej, q≠vj+1  
we place witness at q𝜀, a point 𝜀 to the left of q on T

 Theorem 3: Uni-monotone polygons are perfect.

Thanks.


