6.2 List Scheduling

DAA2-2018 1



6.12 List Scheduling Problem

Input: a list of n processes P1...Pn with execution times p; > 0, 1 <j<n, m processors My, ..., M.
Output: Assignment of the n processes to the processors: Each process needs an uninterrupted
execution time of pjon one of the m processors. Each processor can handle at most one process at a
time.

Algorithmus 6.13 List Scheduling
WHILE L=@

P= first(L)

Wait until a processor M becomes free

Assign P to processor M
END WHILE

DAA2-2018 2



Theorem 6.14:
The list scheduling algorithm 6.13 is (2-1/m)-competitive.

Proof:
Let s;and gj be the start and end time of process j in the order produced by algorithm 6.13.
Let Pk be the process that ends last, i.e., ex = max{e1, ..., en}.

—>No processor is free before sk (otherwise Px would have been assigned to that processor before
Sk)

M
M>

My,

0

Abbildung 8.1: Die Analyse von Grahams Scheduling Algonthmus.

Let Cis be the time used to process all processes by algorithm 6.13, and Copt the optimal time.
= 1. CopT> Pk

2. Copr > — Z ._1P; (lower bound for best possible situation of all processes running in
parallel until the end

Crs = e = sk +pr < o  2j#k D +or =00 =1"p;j+ (1 — - )pw
< COPT +(1 - E5)Copr=(2-=x)Copr

DAA2-2018 3

—



Algorithm 6.13 is a greedy algorithm.

Greedy does not always lead to a good result:

Consider the ski rental problem (rental fee 50€, price 500€).

It we'd know beforehand that we’ll ski at most 9 times, we’ll rent.

For more ski trips, we would buy skies.

Assume you rent (m-1) times, and buy for the m-th skiing trip.

—> we pay (m-1)"50 + 500€

If we know how many skiing trips we make, we pay at most min{m*50, 500}€
The ratio has the minimum at m=10, with a competitive ratio of 1.9

—> There is no online algorithm with a competitive ratio better than 1.9

The trivial algorithm of renting 9 times and buying for the 10th trip achieves this ratio
The greedy strategy would rent skies every time

—> The greedy strategy would lead to an arbitrarily bad competitive ratio.

DAA2-2018 4



6.3 Randomized Online Algorithms

DAA2-2018 S}



We considered deterministic online algorithms so far.

Disadvantage: for, e.g., paging the adversary can determine the page order a priori, such that the online
algorithm will occur a page fault at every request.

If the algorithm can hide its inner state from the adversary, it would not be possible to create such worst-case
requests.

One option to do so are randomised algorithm (access to a random number source/throwing an imaginary coin).
Then the cost of the randomised algorithm depends on the random numbers

—> We consider the expected value of the cost to measure the algorithm
=—> A randomised algorithm is called c-competitive if the expected cost is at most c-times higher than the cost

of the adversary
We need to distinguish different adversaries:
- Oblivious adversary: Does not know about the random decisions of the algorithm.
- A randomised online algorithm A is c-competitive against an oblivious adversary G, if
E[Ca(0)] < ¢ CorT(0) + (expected value over all random decisions of A; the oblivious adversary
must choose o in the beginning, hence, no expected value on the right hand side)
- Adaptive adversary: All random decisions that the algorithms performs after requests are told to the
adversary.
- The request ot depends on the answers given by the online algorithm so far
= \\Ve need another definition for competitiveness
= 0=0(A,G) with A-online algorithm, G-adversary
= Request order o is a random variable
= A randomised online algorithm is c-competitive against an adaptive online adversary G, if
E[Ca(o(A,G))] < ¢ E[Ca(o(A,G))] + a. For all adversaries G, where G may only use an online algorithm A’ to
answer o(A,G)
= A randomised online algorithm is c-competitive against an adaptive offline adversary G, if
E[Ca(c(A,G))] < ¢ E[CorT(0(A,G))] + a. - here the adversary can wait until all of o(A,G) is created and then
answer it with OPT.

DAA2-2018 §)



We consider an oblivious adversary.

Algorithm 6.15 Marking
Input: a page request o
Output: an evicted page
IF 0i ¢ cache C THEN
IF C is not full
THEN load oito C
ELSE IF all pages are marked
THEN delete all markings
Choose a random unmarked page s; (uniformly distributed)
Delete sj and load o
Mark o

Algorithm 6.15 follows the general scheme for exchanging pages, the important step is choosing a random
page from the unmarked pages.

Without proof: The optimal offline strategy MIN replaces the page that was not used for the longest time (also
greedy).

DAA2-2018 7



Algorithm 6.15 Marking
Input: a page request o
Output: an evicted page
IF oi ¢ cache C THEN

IF C is not full
THEN load oito C
ELSE IF all pages are marked
THEN delete all markings
Choose a random unmarked page s; (uniformly distributed)
Delete sj and load o
Mark o

Theorem 6.16 [A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator, N. Young: Competitive paging algorithms.
Journal of Algorithms 12, 1991, 685 - 699]:
Algorithm 6.15 Is 2Hk-competitive against every oblivious adversary.

Hk: k-th harmonic number, Hk=1+1/2+1/3+...+1/k < 1 + In(k)

Proof: We denote the cost of algorithm 6.15 on request sequence o by Cwu(0).
We need to show that for all request sequences o we have: E[Cwu(0)] £ 2HkCmin(O)

To simplify the proof, we assume: Marking and MIN start both with empty cache. (Otherwise we would need to
add k on the right hand side.)

Strategy:

1. Upper bound for cost of algorithm 6.15
2. Lower bound for cost of MIN.

DAA2-2018 8



Algorithm 6.15 Marking
Input: a page request o
Output: an evicted page
IF oi ¢ cache C THEN

IF C is not full
THEN load oito C
ELSE IF all pages are marked
THEN delete all markings
Choose a random unmarked page s; (uniformly distributed)

Delete sj and load o
Mark o

1. Upper bound for cost of algorithm 6.15:

We split o into phases (again):

e Phase O starts with the first page request

e Phase /starts after phase -1 and ends before the request of the (k-1)st page in phase i

® k pages of phase m are denoted by Pm

Referenzen Referenzen Referenzen
auf k& Seiten auf k& Seiten auf k& Seiten
01 e oil—l oil e oig-l 01'2 e 0i3--1 Gi3
| A It i
Phase O ‘ Phase 1 Phase 2 Phase 3
Referenz auf

(k+ 1)-ste Seite

Abbildung 8.7: Die Einteilung von ¢ in Phasen.

DAA2-2018 S



Algorithm 6.15 Marking

Referenzen Referenzen Referenzen
auf k Seiten auf k Seiten auf k Seiten Input: a page request o
—e e Output: an evicted page
o1 - Gi-1 Oy - Ol Oip, - Oi1 Oi IF oi ¢ cache C THEN
| | i i IF Cis not full
ELSE IF all pages are marked
Referenz anf THEN delete all markings
(k+1)-ste Sette Choose a random unmarked page s; (uniformly distributed)
Abbildung 8.7: Die Einteilung von ¢ in Phasen. Delete sj and load o

Mark o

1. Upper bound for cost of algorithm 6.15:

Observation 1: The split of o into phases depends only on ¢ and not on the algorithm we consider.

Observation 2: At the end of each phase m, all pages are marked, and there are exactly the k pages requested
iIn phase m in the cache.

Proof: by induction.

Obviously holds for phase 0, as exactly k pages are loaded into the cache.

Assume that also at the end of phase i-1 all pages are marked, and exactly the pages requested in phase i-1
are in the cache.

= In step 5 of algorithm 6.15 all markings are deleted by requesting page (k-1)
In phase i one after another k pages are marked
— Shortly before the end of the phase all pages are marked again, and exactly those pages requested in

phase i are in the cache.

Observation 3: At most the first page request for a page in a phase results in a page fault.

(After the first request the page does not get deleted in that phase.) .

m-—1 Py
— —
iy “** Oim-1 O -+ Oi,.,-1
I Il J

Phase m— 1 Phase m
Abbildung 8.8: Phasen m — 1 und m von Markine.

—> We can restrict to consider one phase m for algorithm 6.15.

DAA2-2018




Algorithm 6.15 Marking

Input: a page request o
Fn-1 Fin Output: an evicted page
e IF o ¢ cache C THEN
Oip1 " Oim-1 O, -+ Oi,.,-1 IF Cis not full
1 11 ) THEN load cito C
Phase m— 1 Phase m ELSE IF all pages are marked
THEN delete all markings
Abbildung 8.8: Phasen m — 1 und m von Marking. Choose a random unmarked page s; (uniformly distributed)

Delete sj and load o
Mark o

1. Upper bound for cost of algorithm 6.15:
We consider the k different pages s1...sk requested in phase m.

Observation 3 = each of these pages results in a page fault at most at the first request in phase m

—>We only need to consider the page requests that request a page for the first time

Let o be a page reference in Py that requests a page from s+...sk for the first time.

We distinguish two categories of requests:

1. otis an old request, if orwas requested also in Pm-1

2. otis a fresh request, if it was not requested in Pm-1

Obviously, all fresh requests result in a page fault.

— If ot is a fresh request: E[Cu(ot)]=1

(Holds for all marking page exchange algorithms, as the cache is filled with old pages at the end of each
phase.)

—> Only interested in the expected cost of an old request

DAA2-2018




Algorithm 6.15 Marking

Input: a page request o
Fn-1 Fin Output: an evicted page
e IF o ¢ cache C THEN
Oip1 " Oim-1 O, -+ Oi,.,-1 IF Cis not full
1 11 ) THEN load cito C
Phase m— 1 Phase m ELSE IF all pages are marked
THEN delete all markings
Abbildung 8.8: Phasen m — 1 und m von Marking. Choose a random unmarked page s; (uniformly distributed)

Delete sj and load o
Mark o

1. Upper bound for cost of algorithm 6.15:
expected cost of an old request

Let ot be an old reference, and assume before ot there were ffresh and v old requests, Sithe cache state at time
t

—=E[Cm(01)] = 0*Pr(cte St) + 1*Pr(oweSh)
= Pr(cigSt)
= 1-Pr(oie St)
—>\We need to determine the probability that ot was in the cache at time t
Page ot was in the cache at the start of phase m, as it is an old request
Pr(ct e St) is the ratio between the number of cache states that contain ot, and the number of all possible cache

states:
PI’(Ot = St) = #(St W|th Ot € St)/ #(St)

DAA2-2018




Algorithm 6.15 Marking
Input: a page request o

Fn-1 Fm Output: an evicted page
e IF o ¢ cache C THEN
Oip1 " Oim-1 O, -+ Oi,.,-1 IF Cis not full
1 11 ) THEN load cito C
Phase m— 1 Phase m ELSE IF all pages are marked
THEN delete all markings
Abbildung 8.8: Phasen m — 1 und m von Marking. Choose a random unmarked page s; (uniformly distributed)

Delete sj and load o
Mark o

1. Upper bound for cost of algorithm 6.15:
We consider the following figure to determine the number of possible cache states:

f+v pages were requested and marked before t in phase m
—> k-(f+V) free for storing pages
In those spaces we can have all k pages that were in the

cache at the start of phase m, except for the v already —
requested pages. v veraltete Referenzen

—> There are as many cache states St as there exist

possibilities to distribute the not yet k-v referenced pages
from phase m-1 to the k-(f+v)

—
kK—v

k—f—v

S::

f frische Referenzen

Abbildung 8.9: Die Belegung des Speichers zum Zeitpunkt 7.

#(St) =

DAA2-2018




Algorithm 6.15 Marking

Input: a page request o
Fn-1 Fin Output: an evicted page
e IF o ¢ cache C THEN
Oippy *** Oim-1 O, -+ Oi,.,-1 IF C is not full
1 11 ) THEN load cito C
Phase m— 1 Phase m ELSE IF all pages are marked
THEN delete all markings
Abbildung 8.8: Phasen m — 1 und m von Marking. Choose a random unmarked page s; (uniformly distributed)

Delete sj and load o
Mark o

1. Upper bound for cost of algorithm 6.15:
We consider the following figure to determine the number of possible cache states for which ot is in St:
ot can be considered as an old request, and we obtain

. k—v—1 o= o
#(S; mito; € S;) = (k—f— . 1) -
v veraltete Referenzer
#(S, mit 6, € ;) f frische Referenzen
ElCu(or)] = o #(Sy) Abbildung 8.10: Die Speicherzustinde, falls o; in S; enthalten ist

k—v—1
1 — (k—f—l‘—l)

(k—v—-1)! (k—f—=v)! f!
(k—f—=v=D!fl  (k=v)!
k—f—v
k—v

I

= 1-

- 1-




Algorithm 6.15 Marking
Input: a page request o

Fn-1 Fin Output: an evicted page
e IF o ¢ cache C THEN
Oip1 " Oim-1 O, -+ Oi,.,-1 IF Cis not full
1 11 ) THEN load cito C
Phase m— 1 Phase m ELSE IF all pages are marked
THEN delete all markings
Abbildung 8.8: Phasen m — 1 und m von Marking. Choose a random unmarked page s; (uniformly distributed)

Delete sj and load o

1. Upper bound for cost of algorithm 6.15: Marico

—>The expected cost for an old request ot is higher for more fresh references before o.
Let fi be the number of fresh requests in phase i

—>Expected cost for the k-fi old requests in phase i: Vi = ﬁ+ fi R fi
kK k-1 k—(k—fi-1)

— total cost for algorithm 6.15 in phase i for fi fresh and k-fi old requests:

1 1
+Vi = fil1+ +ot—) < fiHg
fi+ Vi fz( il k) < JfiHg

n
=> Summing over all phases of o1 E[Cy(0)] < Hi Y fi.
=1

DAA2-2018




Proof:

2. Lower bound for cost of MIN.
Let Ai be the number of pages at the end of phase i-1 that are in the cache of MIN, but not in the cache of alg.
6.15.

We consider MIN at the begin of phase i, i.e., before the first page request:

Assume, the number f; of fresh requests in phase i is larger than A..
As the fresh requests were not in the cache of alg. 6.15 at the
begin of phase i, they are not part of the k-Aj pages of MIN.

—> Each of the additional fresh requests results in a page fault
—> Cumin(Phase i) > fi - A

fi frische Referenzen

%,-——J\ " —

A; gemeinsame Seiten mit Marking

Abbildung 8.11: Die Situation von MIN zu Beginn der Phase i.

DAA2-2018




Proof:

2. Lower bound for cost of MIN.

Consider MIN at the end of phase i:

In phase i k different pages are requested, all of which are in the
Cache of alg. 6.15 by observation 2.

=—> Number of different pages in MIN’s cache at some time

. . L J —
during phase i is at least K+Aj+1 B
—> As at most k pages can be the cache at one time: Aii gemeinsame Seiten mit Marking
CI\/IIN(Phase |) > Ajy1 Abbildung 8.12: Die Situation von MIN am Ende der Phase i.

—>. Cwmin(Phase i) > max(fi-Aj, Air1) > 1/2 (f-Ai + A1)
—> Summing over all phases (most A; cancel out, and A1=0, An+1>0):

l"‘,‘l

1

Ss(h—Mi+Mo+ oMo+ A3+ + Any1)
n
D fi— A+ A

- \i=1

n

2. fi

11

Cumin(O)

Y
I

t

-

b | b=

- n 1 -
= E[Cu(0)] < Hi) fi=2H: (Fzﬁ) = 2HCuv (0).
=1 “i=1

DAA2-2018




Algorithm 6.15 Marking
Input: a page request o
Output: an evicted page
IF oi ¢ cache C THEN

IF C is not full
THEN load oito C
ELSE IF all pages are marked
THEN delete all markings
Choose a random unmarked page s; (uniformly distributed)
Delete sj and load o
Mark o

Theorem 6.17:
Let A be a randomised paging algorithm. There exists an arbitrary long page sequence o such that
Ca(0)=HkCmin(0).

That is, apart for the factor of two, algorithm 6.15 is optimal.

DAA2-2018




6.3 Online Search

DAA2-2018




DAA2-2018




