Defintion 5.4 Set Cover

Input:

- A universe U of n elements
- A collection of subsets of U
- $\bullet S = \{S_1, \dots, S_k\}$
- A cost function c: S→Q+

Output: a minimum cost sub collection of S that covers all elements of U. Frequency of an element: number of sets it is in. f: frequency of most frequent element. Approximation algorithms for SC achieve either O(log n) or f.

Spezialfall VC:

U:=E

 $S_i := \{ e \in E \mid e = \{v_i, w\} \in E, w \in V \}$

(f=2)

Approximation?

Idea: cover as much as possible at once

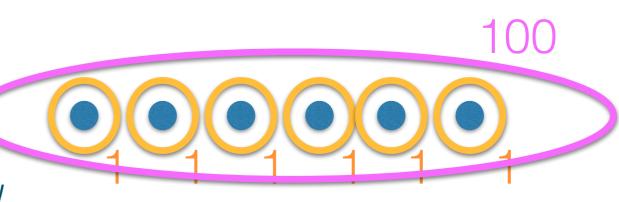
Possible problem: we do not consider the cost:

⇒ Consider the cost per covered element

 $\Longrightarrow |S_i| / c(S_i)$ — covering per cost unit - maximize!

 \Longrightarrow c(S_i) / |S_i| — cost per element - minimize!

Note: if wer use this criteria repetedly, we should only consider the remaining un-covered elements.



Price of an element: the average cost at which it is covered When a set S is picked, we can think of its cost being distributed equally among the new elements covered, to set their prices.

Algorithm 5.5 (Greedy Set Cover Algorithm)

Input: collection of subsets of U, costs $c(S_i)>0$ for each subset.

Output: a SC of U.

- 1. C=Ø, S=Ø (C is the set of elements already covered at the beginning of an iteration)
- 2. WHILE (C≠U) DO

Find the set whose cost-effectiveness is smallest, say S.

 $\alpha = c(S)/|S\setminus C|$ (cost-effectiveness of S)

Pick S, and for each element $e \in S \setminus C$, set price(e)= α

C=CuS

3. Output the picked sets.

Algorithm 5.5 (Greedy Set Cover Algorithm)

Input: collection of subsets of U, costs $c(S_i)>0$ for each subset. Output: a SC of U.

1. $C=\emptyset$, $S=\emptyset$ (C is the set of elements already covered at the beginning of an iteration)

3

2. WHILE (C≠U) DO

Find the set whose cost-effectiveness is smallest, say S. $\alpha = c(S)/|S\setminus C|$ (cost-effectiveness of S)

Pick S, and for each element $e \in S \setminus C$, set price(e)= α

C=CUS

3. Output the picked sets.

Lemma 5.6: For each $k \in \{1, ..., n\}$, price(e_k) $\leq OPT/(n-k+1)$.

Proof:

In each iteration, when we choose a set S_i , we can cover the not yet covered elements C^* with cost at most OPT ($C^*=U-C$).

 \implies Among the elements in C^ must be an element with at most the average cost-effectiveness OPT/ $|C^{\circ}|$ as price.

Let ek be this element.

In the iteration in which we cover e_k at least the n-k+1 elements e_k , ..., e_n were not covered.

 \implies price(e_k) \leq OPT/|C^{\(\)}| \leq OPT/(n-k+1)

Algorithm 5.5 (Greedy Set Cover Algorithm)

Input: collection of subsets of U, costs $c(S_i)>0$ for each subset. Output: a SC of U.

- 1. $C=\emptyset$, $S=\emptyset$ (C is the set of elements already covered at the beginning of an iteration)
- 2. WHILE (C≠U) DO

Find the set whose cost-effectiveness is smallest, say S.

 $\alpha = c(S)/|S\setminus C|$ (cost-effectiveness of S)

Pick S, and for each element $e \in S \setminus C$, set price(e)= α

C=CUS

3. Output the picked sets.

Theorem 5.7: The greedy algorithm is an H_n -approximation algorithm for the minimum set cover problem, where $H_n=1+1/2+...+1/n$.

Proof:

For each i and $e_k \in S_i \setminus C$ price $(e_k) = c(S_i)/|S_i \setminus C|$ gives the cost fraction of e_k of the total cost of S_i .

 \Longrightarrow When we cover elements in the order $e_1, \dots, e_k, \dots e_n$:

$$\sum_{i \in S} c(S_i) = \sum_{k=1}^n \operatorname{price}(e_k)$$

$$\leq \sum_{k=1}^n \frac{OPT}{n-k+1}$$

$$= H_n \times OPT$$

Tight?



Greedy outputs:

cover of the n singletons (in each iteration some singleton is the most cost-effective set) \Longrightarrow Cost of algorithm: $1/n+1/(n-1)+....+1=H_n$

Optimal cover:

cost 1+ε

Set Cover is a very general problem: many optimization problems can be formulated as a Set Cover problem.

Set Cover cannot be approximated better than $\Omega(\log n)$ if not P=NP. For details see Chapter 29 of the Vazirani-book.

DAA2-2018

6

DNA analysis:

View: human DNA as very long string over four-letter alphabet

Scientists: try to decipher this string

Very long string → first decipher several overlapping short segments

Locations of these segments on the original DNA not known

Hypothesis: The shortest string which contains these segments as substrings is a good

approximation to the original DNA string

More formal:

Problem 5.8: Shortest Superstring

Given: Finite alphabet Σ (for us: A,C,G,T), and a set of strings, $S=\{s_1,\ldots,s_n\}\in\Sigma^+$

Find: shortest string s that contains each si as a substring

Wlog: no string s_i is a substing of another string s_i, j≠i

Example:

AC.....C, C....CG (each with k times C)

Can be combined to: ACkG

If we add a third string Ck+1

⇒Shortest superstring: ACk+1G

The problem is NP-hard.

Greedy Algorithm

- 1: Greedy Shortest Superstring
- 2: **input:** A set of strings S.
- 3: **output:** A short superstring of S.
- 4: T ← S
- 5: while |T| > 1 do
- 6: Let a and b be the most overlapping strings of T
- 7: Replace a and b with the string obtained by overlapping a and b
- 8: end while
- 9: T contains a superstring of S

Example

```
• S = T = {CATGC, CTAAGT, GCTA, TTCA, ATGCATC}
```

- T = {CATGCATC, CTAAGT, GCTA, TTCA}
- $T = \{CATGCATC, GCTAAGT, TTCA\}$
- T = {TTCATGCATC, GCTAAGT}
- T = {GCTAAGTTCATGCATC}

Approximation guarantee

- ALG $\leq 4 \cdot \text{OPT}$ (proved by Blum et. al.)
- ALG ≤ 2 · OPT (conjectured)

Conjectured worst case

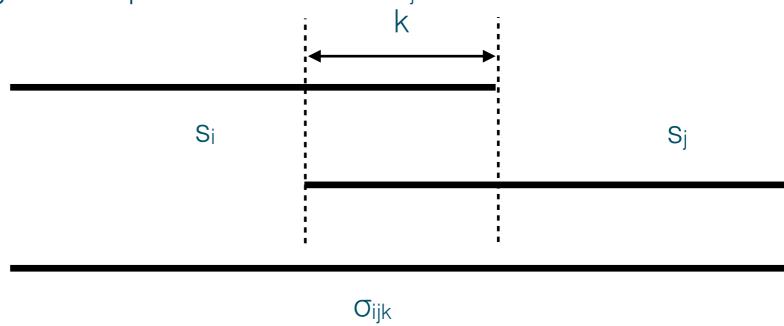
$$S = \{ab^k, b^k c, b^{k+1}\}$$

source: http://fileadmin.cs.lth.se/cs/Personal/Andrzej_Lingas/superstring.pdf

Using Set Cover:

We consider possibilities to concatenate pairs of strings.

For s_i , $s_j \in S$, k>0: if the last k symbols of s_i are the same as the first k symbols of s_j , let σ_{ijk} be the string obtained by overlapping these k positions of s_i and s_j :



Set Cover: Choose sets that cover all elements with least cost, we define instance S:

Elements:

• The input strings $S=\{s_1,...,s_n\}$

Subsets:

- M= set of strings σ_{ijk} for all valid choices of i,j,k
- β=SυM
- For a string $\pi \in \beta$: set $(\pi) = \{s \in S \mid s \text{ is a substring of } \pi\}$

Cost of a subset: $C(\pi) = |\pi|$

Algorithm 5.9 (Shortest Superstring via Set Cover)

- 1. Use the greedy set cover algorithm to find a cover for the instance $\boldsymbol{\mathcal{S}}$. Let set(π_1), ..., set(π_k) be the sets picked by this cover.
- 2. Concatenate the strings $\pi_1, ..., \pi_k$ in any order.
- 3. Output the resulting string, say s.

DAA2-2018 12

$S = \{CATGC, CTAAGT, GCTA, TTCA, ATGCATC\}$		
π	Set	Cost
CATGC		
CTAAGT		
CATGCTAAGT	CATGC, CTAAGT, GCTA	10
CATGC		
GCTA		
CATGCTA	CATGC, GCTA	7
CATGC		
ATGCATC		
ATGCATCATGC	CATGC, ATGCATC	11
CTAAGT		
TTCA		
CTAAGTTCA	CTAAGT, TTCA	9
ATGCATC		
CTAAGT		
ATGCATCTAAGT	CTAAGT, ATGCATC	12
GCTA		
ATGCATC		
GCTATGCATC	GCTA, ATGCATC	10
TTCA		
ATGCATC		
TTCATGCATC	TTCA, ATGCATC, CATGC	10
GCTA		
. CTA AGT		
GCTAAGT	GCTA, CTAAGT	7
TTCA		
CATGC		_
TTCATGC	CATGC, TTCA	7
CATGC		
. ATGCATC	CATCO ATCOATO	
CATGCATC	CATGC, ATGCATC	8
CATGC	CATGC	5
CTAAGT	CTAAGT	6
GCTA	GCTA	4
TTCA	TTCA	4
ATGCATC	ATGCATC	7

source: http://fileadmin.cs.lth.se/cs/Personal/Andrzej_Lingas/superstring.pdf

Algorithm 5.9 (Shortest Superstring via Set Cover)

- 1. Use the greedy set cover algorithm to find a cover for the instance S. Let $set(\pi_1),...,set(\pi_k)$ be the sets picked by this cover.
- 2. Concatenate the strings $\pi_1, ..., \pi_k$ in any order.
- 3. Output the resulting string, say s.

Lemma 5.10: OPT \leq OPT $_{\mathcal{S}} \leq$ 2 OPT

(OPT= OPT for SSP, OPT_s = OPT for SCP)

Proof:

s is a feasible superstring, hence, we have OPT ≤ OPT_S

Let s be a shortest superstring of $s_1, ..., s_n, |s| = OPT$

Sufficient: produce some set cover of cost at most 2 OPT.

Consider the leftmost occurrence of the strings s₁, ..., s_n in string s

No string substring of another \Longrightarrow these n leftmost occurrences start at distinct places in s

⇒they also end at distinct places

Renumber the strings in the order in which their leftmost occurrences start

⇒Also the order in which they end

Algorithm 5.9 (Shortest Superstring via Set Cover)

- 1. Use the greedy set cover algorithm to find a cover for the instance $\boldsymbol{\mathcal{S}}$. Let $set(\pi_1),...,set(\pi_k)$ be the sets picked by this cover.
- 2. Concatenate the strings $\pi_1, ..., \pi_k$ in any order.
- 3. Output the resulting string, say s.

Proof ctd:

We partition the ordered list of strings into groups:

- Each group: contiguous set of strings from this list
- Let b_i and e_i denote the index of the first and last string in the i-th group (b_i=e_i is fine)
- \rightarrow b₁=1
- e₁=largest index of a string that overlaps with s₁ (there exists at least one such string: s₁)
- In general: if $e_i < n \ b_{i+1} = e_i + 1$
- e_{i+1} is largest index of string that overlaps with s_{bi+1}
- Eventually: e_t=n for some t≤n
 For each pair of strings (s_{bi}, s_{ei}), let k_i>0 be the length of the overlap between their leftmost occurrences in s (may be different from their max overlap)

Let $\pi_i = \sigma_{bi.ei.ki}$

 $\Longrightarrow \{ set(\pi_i) \mid 1 \le i \le t \} \text{ is a solution for } \mathcal{S}$

Critical observation: π_i does not overlap π_{i+1}

Proof for i=1 (same argument for arbitrary i):

Assume π₁ overlaps π₃

 \Longrightarrow occurrence of s_{b3} in s overlaps the occurrence of s_{e1}

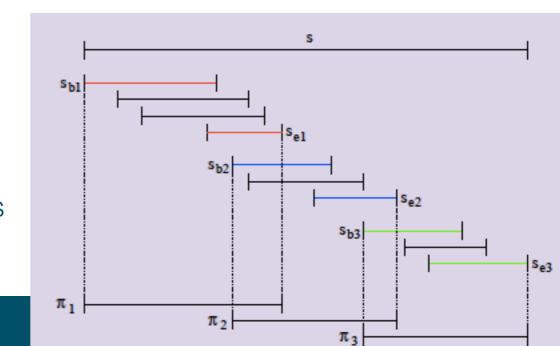
But: s_{b3} does not overlap s_{b2} (ow. s_{b3} would have been put in the 2nd group

 \Longrightarrow s_{e1} ends later than s_{b2}

contradiction (property of endings of strings)

 \implies Each symbol of s is covered by at most two of the π_{i} 's

 $\Longrightarrow \mathsf{OPT}_{\mathcal{S}} \leq \Sigma_i \ |\pi_i| \leq 2 \ \mathsf{OPT}$



Algorithm 5.9 (Shortest Superstring via Set Cover)

- 1. Use the greedy set cover algorithm to find a cover for the instance S. Let $set(\pi_1),...,set(\pi_k)$ be the sets picked by this cover.
- 2. Concatenate the strings $\pi_1, ..., \pi_k$ in any order.
- 3. Output the resulting string, say s.

The size of the universal set in S is n (=number of strings in the given shortest superstring instance) + Lemma 5.10 + Theorem 5.7:

Theorem 5.11: Algorithm 5.9 is a 2H_n-approximation for the shortest superstring problem, where n is the number of strings in the given instance.

DAA2-2018 16

DAA2-2018 17