ge;mtlon g; !et !over

Input:

e A universe U of n elements

e A collection of subsets of U

® S={51,...,5«}

e A cost function c: S—=Q*

Qutput: a minimum cost sub collection of S that covers all elements of U.

Frequency of an element: number of sets it is in. f: frequency of most frequent element.
Approximation algorithms for SC achieve either O(log n) or f.

Spezialfall VC:

U:.=E

Sii={eek | e={vi, w} € E, weV}
(f=2)

Approximation?

ldea: cover as much as possible at once — O
Possible problem: we do not consider the cost: ® © © o o o |
—> Consider the cost per covered element w Q:‘%
—|Si| / ¢(Si) — covering per cost unit - maximize!

—¢(Si) / |Si| — cost per element - minimize!

Note: if wer use this criteria repetedly, we should only consider the remaining un-covered

DAA2-2018

Price of an element: the average cost at which it is covered
When a set S is picked, we can think of its cost being distributed equally among the new
elements covered, to set their prices.

Algorithm 5.5 (Greedy Set Cover Algorithm)
Input: collection of subsets of U, costs ¢(Si)>0 for each subset.

Output: a SC of U.
1. C=02, S=2 (C is the set of elements already covered at the beginning of an iteration)

2. WHILE (C=U) DO
Find the set whose cost-effectiveness is smallest, say S.

a = ¢(S)/|S\C| (cost-effectiveness of S)
Pick S, and for each element eeS\C, set price(e)=a

C=CuS
3. Output the picked sets.

DAA2-2018 p

Algorithm 5.5 (Greedy Set Cover Algorithm)
Input: collection of subsets of U, costs ¢(Si)>0 for each subset.
Output: a SC of U.
1. C=2, S=@ (C is the set of elements already covered at the beginning of an iteration)
2. WHILE (C+U) DO
Find the set whose cost-effectiveness is smallest, say S.

a = ¢(S)/|S\C| (cost-effectiveness of S)
Pick S, and for each element eeS\C, set price(e)=a

C=CuS
3. Output the picked sets.

Lemma 5.6: For each ke{1,...,n}, price(ex)<OPT/(n-k+1).

Proof:

In each iteration, when we choose a set Si, we can cover the not yet covered elements CA
with cost at most OPT (C"=U-C).

—> Among the elements in CA must be an element with at most the average cost-

effectiveness OPT/|C"| as price.

Let ex be this element.

In the iteration in which we cover ek at least the n-k+1 elements gy, ..., en were not covered.
= price(ex) < OPT/|C* <OPT/(n-k+1)

DAA2-2018 3

Algorithm 5.5 (Greedy Set Cover Algorithm)
Input: collection of subsets of U, costs ¢(Si)>0 for each subset.
Output: a SC of U.

1. C=2, S=@ (C is the set of elements already covered at the beginning of an iteration)
2. WHILE (C+U) DO

Find the set whose cost-effectiveness is smallest, say S.
a = ¢(S)/|S\C| (cost-effectiveness of S)

Pick S, and for each element eeS\C, set price(e)=a

C=CuS
3. Output the picked sets.

Theorem 5.7: The greedy algorithm is an Hpr-approximation algorithm for the minimum set
cover problem, where Hn=1+1/2+...+1/n.
Proof:

For each i and exeS\C price(ex)= c(Si)/|S\C| gives the cost fraction of ex of the total cost of Si.
—> When we cover elements in the order eq,...,exk,...€n:

D _ies €(5i) = > -1 brice(e)
g e
— H, x OPT

Tight?
= R F g N ~
® 6 6 66 06 o

Greedy outputs:
cover of the n singletons (in each iteration some singleton is the most cost-effective set)
—>Cost of algorithm: 1/n+1/(n-1)+....+1 = Hx

Optimal cover:
cost 1+e

DAA2-2018 5

Set Cover is a very general problem: many optimization problems can be formulated as
a Set Cover problem.

Set Cover cannot be approximated better than Q(log n) if not P=NP. For details see
Chapter 29 of the Vazirani-book.

DAA2-2018 6

Application of Set Cover: Shortest Superstring

DNA analysis:

View: human DNA as very long string over four-letter alphabet
Scientists: try to decipher this string

Very long string = first decipher several overlapping short segments

Locations of these segments on the original DNA not known

Hypothesis: The shortest string which contains these segments as substrings is a good
approximation to the original DNA string

More formal:

Problem 5.8: Shortest Superstring

Given: Finite alphabet 2 (for us: A,C,G,T), and a set of strings, S={s1,...,Sn}e2>+
Find: shortest string s that contains each s; as a substring

WIog: no string sj is a substing of another string s, j#I

Example:

AC....C, C....CG (each with k times C)
Can be combined to: ACKG

It we add a third string Ck+1

=Shortest superstring: ACk+1G

The problem is NP-hard.

DAA2-2018 7

Application of Set Cover: Shortest Superstring

Greedy Algorithm

Greedy Shortest Superstring

input: A set of strings S.

output: A short superstring of S.

TS

while |T| > 1 do
Let a and b be the most overlapping strings of T
Replace a and b with the string obtained by overlapping a
and b

end while

9: T contains a superstring of S

o S sr G b b

0

source: http://ffileadmin.cs.lth.se/cs/Personal/Andrzej_Lingas/superstring.pdf

DAA2-2018 8

Application of Set Cover: Shortest Superstring

S = T = {CATGC, CTAAGT, GCTA, TTCA, ATGCATC)}
T = {CATGCATC, CTAAGT, GCTA, TTCA}

T = {CATGCATC, GCTAAGT, TTCA}

T = {TTCATGCATC, GCTAAGT}

T = {GCTAAGTTCATGCATC}

source: http://ffileadmin.cs.lth.se/cs/Personal/Andrzej_Lingas/superstring.pdf

DAA2-2018 9

Application of Set Cover: Shortest Superstring

Approximation guarantee

o ALG < 4. OPT (proved by Blum et. al.)
@ ALG < 2- OPT (conjectured)

Conjectured worst case
S = {abk, bkc, bk+1}

source: http://ffileadmin.cs.lth.se/cs/Personal/Andrzej_Lingas/superstring.pdf

DAA2-2018 10

Application of Set Cover: Shortest Superstring

Using Set Cover:
We consider possibilities to concatenate pairs of strings.
For si, sjeS, k>0: if the last k symbols of sjare the same as the first k symbols of s;, let O

be the string obtained by overlapping these k positions of si and s;:
- K

1 -

—I

Si - ' Sj

Oijk

Set Cover: Choose sets that cover all elements with least cost, we define instance S:

Elements:
e The input strings S={s1,...,Sn}
Subsets:
e M= set of strings ojk for all valid choices of i,j,k
e 3=SuM

e For a string mef3: set(m)={seS | s is a substring of 1}
Cost of a subset: c(m)=|r|

DAA2-2018

Application of Set Cover: Shortest Superstring

Algorithm 5.9 (Shortest Superstring via Set Cover)
1. Use the greedy set cover algorithm to find a cover for the instance S. Let set(r1),

...,Set(rk) be the sets picked by this cover.
2. Concatenate the strings t,...,Tk in any order.
3. Output the resulting string, say s.

DAA2-2018

ApE el

DAA2-2018

S = {CATGC, CTAAGT, GCTA, TTCA, ATGCATC}

™ | Set | Cost
CATGC.....
....CTAAGT
CATGCTAAGT CATGC, CTAAGT, GCTA 10
CATGC. .
...GCTA
CATGCTA CATGC, GCTA 7
...... CATGC
ATGCATC....
ATGCATCATGC CATGC, ATGCATC 11
CTAAGT. ..
..... TTCA
CTAAGTTCA CTAAGT, TTCA 9
ATGCATC.....
...... CTAAGT
ATGCATCTAAGT CTAAGT, ATGCATC 12
GCTA......
...ATGCATC
GCTATGCATC GCTA, ATGCATC 10
TTCA......
...ATGCATC
TTCATGCATC TTCA, ATGCATC, CATGC 10
GCTA...
.CTAAGT
GCTAAGT GCTA, CTAAGT 7
TTCA. ..
. .CATGC
TTCATGC CATGC, TTCA 7
CATGC. ..
.ATGCATC
CATGCATC CATGC, ATGCATC 8
CATGC CATGC 5
CTAAGT CTAAGT 6
GCTA GCTA 4
TTCA TTCA 4
ATGCATC ATGCATC 7

source: http://fileadmin.cs.lth.se/cs/Personal/Andrzej_Lingas/superstring.pdf

13

Application of Set Cover: Shortest Superstring

Algorithm 5.9 (Shortest Superstring via Set Cover)
1. Use the greedy set cover algorithm to find a cover for the instance S.
Let set(rt1),...,set(rk) be the sets picked by this cover.

2. Concatenate the strings 14,...,Tk in any order.
3. Output the resulting string, say s.

Lemma 5.10: OPT < OPTg < 2 OPT (OPT= OPT for SSP, OPTs =0PT for SCP)

Proof:
s is a feasible superstring, hence, we have OPT < OPTs

Let s be a shortest superstring of s1, ..., Sn, [s|=OPT
Sufficient: produce some set cover of cost at most 2 OPT.
Consider the leftmost occurence of the strings sq, ..., snin string s

No string substring of another = these n leftmost occurrences start at distinct places in s

—>they also end at distinct places

Renumber the strings in the order in which their leftmost occurrences start
—>Also the order in which they end

DAA2-2018

Algorithm 5.9 (Shortest Superstring via Set Cover)

Let set(r1),...,set(tk) be the sets picked by this cover.

2. Concatenate the strings 14,...,Tik in any order.

Proof ctd: 3. Output the resulting string, say s.
We partition the ordered list of strings into groups:

e Fach group: contiguous set of strings from this list
e | et bi and e denote the index of the first and last string in the i-th group (bi=ei is fine)
= =1
e ci=largest index of a string that overlaps with s+ (there exists at least one such string: s1)
e |n general: if ei<n bir1=ei+1
® ci.1 is largest index of string that overlaps with Spis1
e Eventually: et=n for some t<n
For each pair of strings (Swi, Sei), let ki>0 be the length of the overlap between their leftmost
occurrences in s (may be different from their max overlap)
Let Mi=0pi.eiki
= {set(m) | 1<i<t} is a solution for S

Critical observation: 1 does not overlap T+

Proof for i=1 (same argument for arbitrary i):

Assume 111 overlaps T3

—> occurence of sp3 In s overlaps the occurrence of Set

1. Use the greedy set cover algorithm to find a cover for the instance S.

But: sp3 does not overlap sp2 (Ow. Sz would have been .
put in the 2nd group el L
—> Se1 ends later than spp ! s

contradiction (property of endings of strings) b2 L
—> Each symbol of s is covered by at most two of the 11rs N

— OPTs< X, |m| <2 OPT —

DAA2-2018 - =
Rj|

Application of Set Cover: Shortest Superstring

Algorithm 5.9 (Shortest Superstring via Set Cover)
1. Use the greedy set cover algorithm to find a cover for the instance S.

Let set(rt1),...,set(rk) be the sets picked by this cover.
2. Concatenate the strings 14,...,Tk in any order.
3. Output the resulting string, say s.

The size of the universal set in Sis n (=number of strings in the given shortest

superstring instance) + Lemma 5.10 + Theorem 5.7:

Theorem 5.11: Algorithm 5.9 is a 2Hny-approximation for the shortest superstring
problem, where n is the number of strings in the given instance.

DAA2-2018

DAA2-2018

