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Rectangular vision
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The Art Gallery Problem (AGP)

O
visibility polygon of guard Given: Polygon P

How many guards do we need
to monitor P?
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Computational Complexity of
Art Gallery Problems

D. T. LEE, SENIOR MEMBER, IEEE, AND ARTHUR K. LIN, MEMBER, IEEE
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Reduction from 3SAT

Given: 3SAT instance A set U = {u1, Uz, ..., Un} Of Boolean variables

and a collection C = { c1, C2,...,Cm} Of clauses over U exist such that
ci € C is a disjunction of precisely three literals.

Literal pattern: Only vertices a and b can cover the distinguished
area of the pattern.

Fig. 1. Literal pattern.

Three of these per clause, each corresponds to one literal.
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Reduction from 3SAT

Clause junction: C=A+B+D, Ae{ui, -ui}, Belu;, muj}, De{uk, —Uk}, ui, uj,
Uk variables in 'l

Lemma I: At least three vertices of Ch, are
required to cover the region defined by the /

pattern Cn shown in Fig. 2. a M1

Lemma 2: Only seven three-vertex covers

exist that can cover the region defined %h1 Oh2

by the pattern Chy. by - [

Lemma 3: The three vertices selected from the <

clause pattern Ch = A + B + D cover the | *ha by, 40
region defined by Cx if and only if the truth 1
values represented by the labels of these e
vertices give a true assignment for Ck. 4 >

Fig. 2. Clause junction C,.
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Reduction from 3SAT

Variable pattern:

e One such pattern will exist per variable in the final construction.

® [he two legs of the variable pattern called rectangles or rectangular
regions, although they are not really rectangles

id ti7

Fig. 3. Vanable pattern; ¢, and (¢35, t;s, s, t;5) are parallel.
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Fig. 4. Putting variable patterns and clause junctions together.
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Fig. 6. Augumenting spikes when :4,. in C,.

Fig. 7. Each spike is replaced with small region.

We call the polygonal regions created as described
the consistency-check patterns.
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F=(u1+u2+u3)/\(u1+§2+u3)/\(u1+§2+E3)’

Fig. 8. Example and minimum cover.

_emma 4: At least K = 3m + n + 1 vertices are needed

for covering the simply connected polygonal region.

= least_3m + n vertices are needed for Covering—
and | Atistietis, 1 = 1,25 . ., N. At least one more vertex Is

needed to cover all the variable patterns’ rectangles. Therefore, the

lemma follows.

Lemma 5: The minimum number of vertices needed to cover the

simply connected polygonal regionis K= 3m +n + 1 if and only if
C is satisfiable.
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The Art Gallery Problem (AGP)

DAA2-2018

NP-hard

® point guards with holes [O’Rourke & Supowit 1983]
® vertex guards without holes [Lee & Lin 1986]

® point guards without holes [Aggarwal 1986]

APX-hard [Eidenbenz, Stamm & Widmayer 2001]

What to do?
-Approximation
-Exact Solutions
-Heuristics



4.2 Shakashaka
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Shakashaka

e Shakashaka is a pencil-and-paper puzzle, proposed by Guten in 2008 and popularized by
the Japanese publisher Nikoli

e An instance of Shakashaka consists of an mxn rectangle of unit squares. Initially, each
square is colored either black or white, and black squares may also contain an integer
between O and 4, inclusive. The solver proceeds by filling in the initially white squares with

squares consisting of a black and a white triangle in one of four orientations: ﬂ I! :I IZ
(b/w squares)

e The white squares may also be left blank.

e The numbers written in black squares constrain the solver by specitying the number of b/w
squares that must neighbor the given square (in its four vertically and horizontally
neighboring squares).

e An instance is considered solved if every maximal con nected white region on the board is a
rectangle (axis-aligned or rotated by 45) and each numbered black square has exactly as
many b/w square neighbors as is specified by its number. Example and its (unigue) solution:
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Shakashaka

Demaine et al. proved that Shakashaka is NP-complete. They used a reduction from
planar 3-SAT, and the black squares in the reduction either contained the number 1 or
remained blank.

We (Aviv Adler, Michael Biro, Erik Demaine, Mikhail Rudoy, Christiane Schmidt) showed
that Shakashaka without numbers in the black squares is NP-complete by a reduction
from POSITIVE PLANAR 1-IN-3 SAT, a variant of the well known PLANAR 3-SAT problem,
shown to be NP-complete by Mulzer and Rote. The reduction is parsimonious, and,
hence, also shows #P-completeness.

For now: think about how a variable gadget could look like.
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Shakashaka

(b) (d)

Figure 2: (a) The variable gadget, (b) with enforced white pixels and (c),(d) the two possible feasible solutions. We associate
the “kite” in blue with a truth setting of “false” and the “kite” in red with a truth setting of “true”.
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Shakashaka

Figure 3: (a) The NOT gadget. (b),(c) The wires connected by the NOT gadget always satisfy opposite truth assignments.
In (b) the gadget is entered with a truth assignment corresponding to “true” and left with a truth assignment corresponding
to “false”. Those roles are reversed in (c). Some enforced triangles are shown in green to facilitate understanding.
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Shakashaka

(a) (b)
Figure 4: (a) The bend gadget. (b),(c) The wires connected by the bend always satisfy the same truth assignment.
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Shakashaka

(b)
Figure 5: (a) A split of the corridor. (b),(c) The wires connected by the split always satisfy the same truth assignment.

DAA2-2018




Shakashaka

The at-most gadget enables us to enforce that at most one of a pair of truth assignments is true.

(d)
Figure 6: (a) The “at most” gadget. (b) with two false inputs, (c)/(d) with one true and one false input, (e) with two true
inputs the board cannot be completed.

(a) (b) (d)
Figure 7: (a) The “at least” gadget: (b) with two false inputs the board cannot be completed, (c¢)/(d) with one true and one
false input, (e) with two true inputs.

The at-most gadget enables us to enforce that at least one of a pair of truth assignments is true.
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The “XOR” gadget, shown in Figure 8, takes two
ShakaShaka wires as input and outputs:

false/false — false

false/true — true or false possible
true/false — true or false possible
true/true — infeasible.

(d) (e) ()

Figure 8: (a) The “XOR” gadget. (b)/(c) two false inputs cannot be completed for a true output (infeasible Shakashaka
board indicated in purple), but may be completed for a false output. (d)/(e) both true/false false/true combinations allow a
true output, (f) two inputs of true result in an infeasible Shakashaka board. Enforced triangles are shown in green.




Shakashaka

Three variables, represented by A, B and C are
pairwise combined by the at-most gadget.
This combination can only be solved if there is at most
one true variable among A, B, and C (i.e. the
possibilities are false/false/false, true/false/false, false/
true/false, and false/false/true).
=we only need to exclude the false/false/false case.
We combine each of two pairs of variables with an
XOR gadget (XOR1 and XOR2) and combine the
results in the at-least gadget.
Note that XOR gadgets would yield an infeasible
Shakashaka board for two true inputs, but this case
has already been excluded.
at mostif 5|l variables are set to false, both XOR gadgets must
output false.
The subseqguent combination of the two XOR outputs
with an at-least gadget results in an infeasible
Shakashaka board.
If one variable is set to true, at least one XOR gadget
can output true.
—=subsequent combination of the two XOR outputs
with an at-least gadget is possible and does not
render the board infeasible.

at mos

N

at most

Figure 9: The clause gadget. The gray components ensure
that the reduction is parsimonious.




5. Approximation Algorithms
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Approximation Algorithms

Wie have an NP-hard/NP-complete problem:

What to do?
-Approximation
-Exact Solutions
-Heuristics

Definition 5.1: A polynomial time algorithm A is called a c-approximation, when for
each problem instance | with optimal value OPT(l) we have:

Ra = O‘;g{() 5y < ¢ for a minimisation problem (¢ > 1)

Ra = O‘;g{() 5y = ¢ for a maximisation problem (¢ < 1)

I/\

c is called the approximation factor.

What do we need?
* A solution
A lower bound on OPT, which we can determine in polynomial time

DAA2-2018




Approximation Algorithms

Example 5.2: Vertex Cover

What is a good bound?

—> max matching! Because we have max Matching < min VC

(In a matching M no two edges can be covered by the same vertex, hence, we already

need |M| vertices for M)

ldea here:

1. Compute a bound (with some object)

2. Compute a feasible solution for our problem, which is not much larger...

Here: one vertex per edge in matching, plus possibly additional vertices
Observation: For the additional vertices we can restrict to the non-chosen vertices of

matching edges
— Choose all vertices of matching edges
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Approximation Algorithms

Algorithm 5.3 (Approximation for VC)
Input: Graph G=(V,E)

Qutput: approximation for VC

(1) Determine a maximal Matching: M
(2) Choose all vertices of edges in M: Su

What is the approximation factor of algorithm 5.37
2!

We have:

Su| = 2*|M|

OPT > |M|

= |Smv| = 2*|M| < 2 OPT
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Approximation Algorithms

Can we do better? Find other solution approach?

1.Can the approximation guarantee of Algorithm 5.3 be improved by a better analysis?

2.Can an approximation algorithm with a better guarantee be designed using the lower
bounding scheme of Algorithm 5.3, that is, the size of a maximal matching?

3.1s there some better bounding method that can lead to an improved approximation
guarantee for VC?

ad 1. NO, this is tight: family of instances where algorithm is factor 2 away from optimum
Complete bipartite graphs
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Short insertion on the TSP (for HW#3)

I gevenal: given @ gpagh - iden B blding o tour ? @
b INST) dencle e s\aw( on ophmal YIST)
ok bPr) dewde e €2 of N ophmal tour.
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Gon ve we the NET to ondmck a tour ?

(dea. doudle ha WU
doervaion. a  Bilerdour exids (d'lnmoemda&g)

WWM@'

DAA2-2018




