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4. Reductions
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4.1 The Art Gallery Problem (AGP) 
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Given: Polygon P 

How many guards do we need 
to monitor P? 

Guard?

visibility polygon of guard 

optimal!
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Given: 3SAT instance  A set U = {u1, u2, …, un} of Boolean variables 
and a collection C = { c1, c2,…,cm} of clauses over U exist such that  
ci ∈ C is a disjunction of precisely three literals. 

Literal pattern: Only vertices a and b can cover the distinguished 
area of the pattern. 

Three of these per clause, each corresponds to one literal.
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Clause junction: C=A+B+D, A∈{ui, ¬ui}, B∈{uj, ¬uj}, D∈{uk, ¬uk}, ui, uj, 
uk variables in U

 Lemma I: At least three vertices of Ch, are  
required to cover the region defined by the  
pattern Ch shown in Fig. 2. 
 Lemma 2: Only seven three-vertex covers  
exist that can cover the region defined  
by the pattern Ch.  

Lemma 3: The three vertices selected from the  
clause pattern Ch = A +  B +  D cover the  
region defined by Ch if and only if the truth  
values represented by the labels of these  
vertices give a true assignment for Ch.
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Variable pattern:
•One such pattern will exist per variable in the final construction.  
•The two legs of the variable pattern called rectangles or rectangular 

regions, although they are not really rectangles
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We call the polygonal regions created as described 
the consistency-check patterns.

F         T F       T
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sees into  
all wells
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Lemma 4: At least K = 3m + n + 1 vertices are needed 
for covering the simply connected polygonal region. 
Proof: At least  3m +  n vertices are needed for covering 3m literal 
patterns, and  Δti1ti2ti3, i = 1,2; . .,  n. At least one more vertex is 
needed to cover all the variable patterns’ rectangles. Therefore, the 
lemma follows. 
 Lemma 5: The minimum number of vertices needed to cover the 
simply connected polygonal region is K =  3m +n + 1 if and only if 
C is satisfiable.
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NP-hard
•point guards with holes [O’Rourke & Supowit 1983] 
•vertex guards without holes [Lee & Lin 1986] 
•point guards without holes [Aggarwal 1986] 

APX-hard [Eidenbenz, Stamm & Widmayer 2001] 

What to do?
-Approximation 
-Exact Solutions 
-Heuristics
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4.2 Shakashaka
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• Shakashaka is a pencil-and-paper puzzle, proposed by Guten in 2008 and popularized by 
the Japanese publisher Nikoli  

• An instance of Shakashaka consists of an mxn rectangle of unit squares. Initially, each 
square is colored either black or white, and black squares may also contain an integer 
between 0 and 4, inclusive. The solver proceeds by filling in the initially white squares with 
squares consisting of a black and a white triangle in one of four orientations:                               
(b/w squares)  

• The white squares may also be left blank.  
• The numbers written in black squares constrain the solver by specifying the number of b/w 

squares that must neighbor the given square (in its four vertically and horizontally 
neighboring squares). 

• An instance is considered  solved if every maximal con nected white region on the board is a 
rectangle (axis-aligned or rotated by 45) and each numbered black square has exactly as 
many b/w square neighbors as is specified by its number. Example and its (unique) solution:
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 Demaine et al. proved that Shakashaka is NP-complete. They used a reduction from 
planar 3-SAT, and the black squares in the reduction either contained the number 1 or 
remained blank.  
We (Aviv Adler,, Michael Biro, Erik Demaine, Mikhail Rudoy, Christiane Schmidt) showed 
that Shakashaka without numbers in the black squares is NP-complete by a reduction 
from POSITIVE PLANAR 1-IN-3 SAT, a variant of the well known PLANAR 3-SAT problem, 
shown to be NP-complete by Mulzer and Rote. The reduction is parsimonious, and, 
hence, also shows #P-completeness.

For now: think about how a variable gadget could look like.
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 The at-most gadget enables us to enforce that at most one of a pair of truth assignments is true.

 The at-most gadget enables us to enforce that at least one of a pair of truth assignments is true.
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 Three variables, represented by A, B and C are 
pairwise combined by the at-most gadget.  
This combination can only be solved if there is at most 
one true variable among A, B, and C (i.e. the 
possibilities are false/false/false, true/false/false, false/
true/false, and false/false/true).  
⟹we only need to exclude the false/false/false case.  
We combine each of two pairs of variables with an 
XOR gadget (XOR1 and XOR2) and combine the 
results in the at-least gadget. 
Note that XOR gadgets would yield an infeasible 
Shakashaka board for two true inputs, but this case 
has already been excluded. 
If all variables are set to false, both XOR gadgets must 
output false.  
The subsequent combination of the two XOR outputs 
with an at-least gadget results in an infeasible 
Shakashaka board.  
If one variable is set to true, at least one XOR gadget 
can output true.  
⟹subsequent combination of the two XOR outputs 
with an at-least gadget is possible and does not 
render the board infeasible.
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5. Approximation Algorithms
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Wie have an NP-hard/NP-complete problem: 

What to do?
-Approximation 
-Exact Solutions 
-Heuristics

Definition 5.1: A polynomial time algorithm A is called a c-approximation, when for 
each problem instance I with optimal value OPT(I) we have: 

c is called the approximation factor.

What do we need? 
• A solution  
• A lower bound on OPT, which we can determine in polynomial time
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Example 5.2: Vertex Cover
What is a good bound? 
—> max matching! Because we have max Matching ≤ min VC 
(In a matching M no two edges can be covered by the same vertex, hence, we already 
need |M| vertices for M) 

Idea here: 
1. Compute a bound (with some object) 
2. Compute a feasible solution for our problem, which is not much larger… 
Here: one vertex per edge in matching, plus possibly additional vertices 
Observation: For the additional vertices we can restrict to the non-chosen vertices of 
matching edges 
→ Choose all vertices of matching edges
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Algorithm 5.3 (Approximation for VC)
Input: Graph G=(V,E) 
Output: approximation for VC 
(1) Determine a maximal Matching: M 
(2) Choose all vertices of edges in M: SM 

What is the approximation factor of algorithm 5.3? 
2! 
We have: 
|SM| = 2*|M| 
OPT ≥ |M| 
⟹ |SM| = 2*|M| ≤ 2 OPT
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Can we do better? Find other solution approach? 
1.Can the approximation guarantee of Algorithm 5.3 be improved by a better analysis? 
2.Can an approximation algorithm with a better guarantee be designed using the lower 

bounding scheme of Algorithm 5.3, that is, the size of a maximal matching? 
3.Is there some better bounding method that can lead to an improved approximation 

guarantee for VC? 

ad 1. NO, this is tight: family of instances where algorithm is factor 2 away from optimum 
Complete bipartite graphs
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