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Problem 1 (Trees):
(a) Prove Theorem 1.61 from the lecture.
(b) Prove Theorem 1.62 from the lecture.

(c) Prove Corollary 1.64 from the lecture.

Problem 2 (Directed cycles and directed cuts):

Show:

In a digraph G, each edge belongs either to a (directed) cycle or to a directed cut.
Moreover, the following statements are equivalent:

(a) G ist strongly connected.
(b) G contains no directed cut.
(c¢) G is connected and each edge of G belongs to a cycle.

(Hint: Take a look at the statements you proved in Problem 2.)

Problem 3 (Best-case running time for quicksort):
Proof Lemma 3.12 from the lecture, that is, the best-case running time for quicksort

Problem 4 (Heap Sort):
Prepare a 10 minute presentation of heapsort: the algorithm, its correctness and
runnning time.

Problem 5 (Merge sort):

Sort the sequence (33,14,7,9,2,11,45,21) using merge sort. Give the intermediate steps
in appropriate form.



Problem 6 (Mastertheorem):

a) Determine the asymptotic growth of the following recursion using the master
theorem

U(n)=4-U()+17-n2+20-U(g) .

Determine the value of all parameters used in the master theorem.

b) Determine the asymptotic growth of the following recursion using the master
theorem

V(n)=14-V(z) +23n+12-V(55) + V() -

Determine the value of all parameters used in the master theorem.

¢) Determine the asymptotic growth of the following recursion using the master
theorem

T(n)=49-T(%)+42n .

Determine the value of all parameters used in the master theorem.

Problem 7 (Quicksort):

Sort the numbers in the following array using the algorithm quicksort presented in the
lecture.

A[l]=14  A[2]=3  A[3]=7  A[4]=1  A[5]=2

The reference element should be chosen as in the lecture (that is, A[r]). Give the array
after each swap operation. Give the intermediate steps from Quicksort- and Partition
calls.

Problem 8 (The Kevin Bacon oracle):

The Kevn Bacon oracle is based on the actor graph G: actors are given as vertices.
Two actor vertices are connected by an edge if they appeared in a movie together. The
vertex of Kevin Bacon has value 0; the Kevin-Bacon number (KBN) of another actor
is the length of a shortest path in G. (Tom Hanks played with Kevin Bacon in Apollo
13, thus, he has Kevin-Bacon number 1.)

The oracle is available here: http://oracleofbacon.org/. The movie data it is based
on is taken from the Internet Movie Database: http://www.imdb. com.

Our questions:



(a) Describe a strategy to definitely find an actor with a KBN as high as possible
in GG, even if you’ve never heard of Hollywood. On which graph algorithm is this
strategy based?

(b) Find a vertex with KBN at least 4.

Problem 9 (Eulerian Path):
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Abbildung 1: Euler on his way home!

Find a Eulerian path in the graph from Figure 1 or show that none exists.



Problem 10 (BFS and DFS):
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Abbildung 2: The graph G.

a) Apply BFS with start vertex v; to graph G from Figure 2.
b) Apply DFS with start vertex v; to graph G from Figure 2.
c¢) Give the adjacency list for G.

(Ad a) and b): If at any time there is more than one vertex to choose from, use the one

with the smallest index. )



Problem 11 (BFS and DF'S in trees):
Construct an algorithm that determines whether an arbitrary given graph G=(V,E) is
a tree based on

(a) DFS
(b) BFS

Problem 12 (Trees and Leaves):

Show that (also during winter) each (undirected) tree has a leaf. (Hint: In an undirected
tree a leaf is defined as a vertex of degree 1.)
(10 points)

Problem 13 (BFS):

Let G = (V,E) be a graph and s € V' a vertex; for an arbitrary vertex x € V' let d(s,z)
denote the length of a shortest path from s to x. Let e = {u,v} € E be an edge.

a) Prove: d(s,v) <d(s,u) + 1.
b) Prove or disprove: d(s,u) < d(s,v) + 1.

¢) Does d(s,v) =d(s,u)+1 oder d(s,u) =d(s,v)+ 1 always hold?

Problem 14 (Forests and Connected Components):
Show: Given a forest with n vertices, m edges and p connected components, then n =
m + p holds.

(8 points)



Problem 15 (Kruskal):
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Determine an MST using Kruskal’s algorithm. Give the edges in the order in which they
are included to the tree, and draw the resulting solution to the problem. Tie breaking:
if in any step several edges could be chosen, choose the one with the smallest edge index.

We assume that we write edges as e = (v;,v;) with @ < j.

IMPORTANT: To obtain a runtime of O(mlogn), the data structure presented in
the seminar can be used. Give the state of the data structure after each edge insertion.

(Note: if there is more than one possibility to add an edge, choose the edge that runs
from the vertex with lower index to the vertex with higher index.)



