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Problem 1 (Algorithm 8.7, Ford-Fulkerson):
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Figure 1: The network (G,u, s, t). The numbers at the edges give the capacities

Use the algorithm by Ford and Fulkerson to determine a maximum s − t-flow in the
network (G,u, s, t). Give the residual graph in each step.
In addition: give a minimum cut.

Problem 2 (Menger’s Theorem (Menger 1927)):
Two paths P and Q are called edge-disjoint if they have no common edge.
Let G be a graph (directed or undirected), let s and t be two vertices and k ∈ N. Then
there are k edge-disjoint s-t-paths if and only if after deleting k − 1 edges t is still
reachable from s.

Problem 3 (Ford-Fulkerson algorithm and irrational capacities):
Show that the algorithm by Ford and Fulkerson might not terminate when it is applied
to a network with irrational capacities.
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Figure 2: A network with irrational capacities

Consider the network in Figure 2 with capacities u(e1) = 1, u(e2) = σ, u(e3) = 1 und

u(e4) = u(e5) = . . . = u(e9) = 4, with σ =

√
5−1
2 . First show σn

= σn+1
+ σn+2.

(Hint: Consider the paths P1 = {e4, e2,
←
e3, e1, e9}, P2 = {e5, e3,

←
e2, e7}, P3 = {e6,

←
e1, e3, e8}

und P4 = {e5, e3, e8}. Show by induction that we can change the residual capacities of
e1, e2 and e3 from σn, σn+1 and 0 to σn+2, σn+3 and 0, respectively. Induction base:
augment along P4. Induction step: augment, consecutively, along P1, P2, P1 and P3.)

Problem 4 (Integer Flow): Show Corrolary 8.12 from the seminar: Let N =

(G,u, s, t) be a network. If the capacities u(e) are all integers, then there exists a
maximum flow in N , such that all f(e) are integeres (in particular, the optimum flow
is integer).

Problem 5 (PUSH-RELABEL algorithm):
This exercise will not be part of the examination, but we can discuss at the examination
date.
For each proof you can use all theorems, lemmata etc. with a smaller number.

(a) Show Proposition 8.20: During the execution of the Push-Relabel algorithm f is
always an s-t-preflow and ψ is always a distance labeling with respect to f . (Hint:
Show that the procedures PUSH and PRELABEL preserve these properties.)

(b) Show Lemma 8.21: If f is an s-t-preflow and ψ is a distance labeling with respect
to f , then

(1) s is reachable from any active vertex v in Gf .

(2) t is not reachable from s in Gf .

(Hint: For (1) consider the set of vertices that are reachable from an active vertex
v. For (2) use contradiciton.)
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(c) Show Theorem 8.22: When the algorithm 8.19 terminates, f is a maximum s-t-
flow.

(d) Show Lemma 8.24: The number of saturating pushes is at most mn.

Problem 6 (MIN CUT problem): The MIN CUT problem is defined as follows:
INPUT: Network (G,u, s, t).
OUTPUT: An s-t-cut of minimum capacity.

Show how you can compute a MIN CUT in time O(n3
).

Matching will be covered in the last lecture on February 21, 2022!

Problem 7 (Maximum matching in bipartite graphs):
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Figure 3: A graph.

Use the flow formulation from the lecture to determine a maximal matching in the
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graph G from Figure 3. Use your preferred flow algorithm.

Problem 8 (Matching and Vertex Cover):
In bipartite graphs we have ν(G) = τ(G) (see seminar notes). In general: ν(G) ≤ τ(G).

(a) Give a graph with ν(G) < τ(G), more precisely τ(G) = 2 ⋅ ν(G).

(b) Give a graph class with ν(G) < τ(G), more precisely τ(G) = 2 ⋅ ν(G).

Problem 9 ((Inclusion-wise) maximal matchings):

A matching M0 in a graph G is called (inclusion-wise) maximal, if there is no matching
M in G with M0 ⊂ M . Let G be a graph and M1,M2 two (inclusion-wise) maximal
matchings in G. Show that ∣M1∣ ≤ 2∣M2∣ gilt.
(Hint: Why do the vertices of the matching edges from M1 and M2 each constitute a
vertex cover? Moreover, we showed that every matching is smaller every vertex cover.)

Problem 10 (Perfect matching in bipartite graphs):
A perfect matching M ⊆ E is a set of pairwise nonadjacent edges, where there is exactly
one edge incident to each vertex. Show that in a bipartite graph G = (V,E) with
V = V1 + V2 in which each vertex has exactly degree k ≥ 1, there is a perfect matching.
Use the theorem by Hall.

Problem 11 (Blossom Algorithm I.):
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Figure 4: Graph G.

(a) Is the graph G from Figure 4 bipartite? Justify your claim.

4



(b) Given the graph G from Figure 4 and the matching M = {e5, e6}.

With the help of the blossom algorithm from the lecture decide whether G has a
perfect matching or not. Startwith the matching M . After each

⋅ Augmentation give the new matching

⋅ Tree-extension operation give the new tree

⋅ Shrinking give the new tree and the graph G′

Always choose the unmatched vertex with smallest index as starting vertex for
your tree. If there is more than one edge to choose from in step 3 of the blossom
algorithm, choose the edge with smallest edge index.

Problem 12 (Blossom Algorithm II.):

e11e2

e8 e9

e6

e4

e1

e3e7

e10
e5

e13
e14e12

v1

v2

v3

v4

v5

v7

v8

v6

v9

Figure 5: Graph H.

Use the blossom algorithm from the lecture to decide whether the graph H from Figure 5
has a perfect matching or not.
Always choose the unmatched vertex with smallest index as starting vertex for your
tree. If there is more than one edge to choose from in step 3 of the blossom algorithm,
choose the edge with smallest edge index. Consider the constructed tree when the

algorithm stops. Delete the black vertices from G and justify that a perfect matching
exists.

Problem 13 (Perfect Matching):

Use the theorem from Tutte to show whether the graph H ′ from Figure 6 has a perfect
matching.
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Figure 6: Graph H ′.
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