
Communications and Transport Systems
Department of Science and Technology
Linköping University

2022/2023

Christiane Schmidt

Design and Analysis of Algorithms Part 2 -
Approximation and Online Algorithms

Homework 4, February 20, 2023

Problem 1 (Gap-Preserving Reduction for Vertex Cover):
For each fixed k, we define MAX3SAT(k) to be the restriction of MAX3SAT to Boolean
formulae in which each variable occurs at most k times.
For integer d ≥ 1, let VC(d) denote the restriction of the cardinality vertex cover problem
to instances in which each vertex has degree at most d.
Show:
Theorem: There is a gap-preserving reduction from MAX3SAT(29) to VC(30) that
transforms a Boolean formula Φ to a graph G = (V,E), such that

• if OPT(Φ)=m, then OPT(G)≤ 2
3 ∣V ∣

• if OPT(Φ)< (1 − ε)m, then OPT(G)> (1 + ε
2

2
3 ∣V ∣

where m is the numbmer of clauses in Φ.
Hint: Check the reduction to the graph GΦ we considered for IS.

Problem 2 (NP-Completeness of the Dominating Set Problem):
Dominating Set Problem:
Instance: Graph G = (V,E), positive integer K ≤ ∣V ∣.
Question: Is there a subset V ′ ⊆ V such that ∣V ′∣ ≤ K and such that every vertex
v ∈ V ∖ V ′ is joined to at least one member of V ′ by an edge in E?

Vertex Cover Problem:
Instance: Graph G = (V,E), positive integer C ≤ ∣V ∣.
Question: Does G contain a vertex cover of size at most C?

Show the Dominating Set Problem to be NP-complete by reducing Vertex Cover to it.

Problem 3 (MAX CUT):
We consider the problem MAX CUT:
Input: an undirected graph G = (V,E) with vertex set V and edge set E.
Output: a partition (S,V ∖ S) of the vertex set, such that the size w(S) of the cut,
that is, the number of edges between S and V ∖ S, is maximized.

1



v1 v2

v3 v4

v5

Figure 1: Graph G.

(a) Consider the example graph G from Figure 1. Give a MAX CUT S for G. What
is its size?

The problem MAX CUT is NP-hard, hence, we consider the following approximation
algorithm:

Algorithm

1 S = ∅

2 while ∃v ∈ V ∶ w(S∆{v}) > w(S) do

3 S = S∆{v}

4 return S

Here, ∆ gives the symmetric difference of two sets, so:

S∆{v} = {
S ∪ {v} ∶ v ∉ S
S ∖ {v} ∶ otherwise

So our algorithms starts with a vertex set S and as long as there exists a vertex that
if added or deleted from S increases the current cut, S is adapted accordingly (with a
local improvement).

(b) Apply the algorithm to the graph H from Figure 2. In case of ties use the following
rule: prefer adding vertices over deleting vertices; in case there still is a tie, use
the vertex with the smallest index.

2



v1 v2 v3

v4
v5 v6

v7

v8 v9

Figure 2: Graph H.

(c) Show: for every given input the algorithm outputs a cut of size w ≥
1
2OPT , where

OPT denotes the size of an optimal cut.

(d) Show that the algorithm has polynomial running time.

(e) Was the analysis from (c) best possible? That is, is there a graph G = (V,E),
such that the algorithm finds a feasible solution S ⊆ V with w(S) = 1

2 ⋅OPT (G)?
(Give a graph with an arbitrary number of nodes.)

Problem 4 (Greedy for (0,1)-Knapsack):
Show that the greedy algorithm, which sorts the objects by decreasing order of the
ratio profit to size and then greedily picks objects, can be arbitrarily bad for the (0,1)-
knapsack problem, in which an object can only be chosen as an entire object or be
neglected completely.

3


