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Problem 1 (Distributed algorithms):
Assume all vertices have an ID, but they can only apply the operations = and ≠to these
IDs. Is it possible to solve leader election in this model? (Hint: give a reason for your
answer, not just no/yes.)

Problem 2 (Independence Systems): Let E = {1, . . . ,10} and
I1 = {{1,2,3,4},{2,3,4,5},{3,4,5,6},{4,5,6,7},{5,6,7,8},{6,7,8,9},
{7,8,9,10},{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8,},
{7,8,9},{8,9,10},{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},
{8,9},{9,10},{1},{2},{3},{4},{5},{6},{7},{8},{9},{10},∅}
and
I2 = {{1,2,3},{6,7,9},{1,2},{1,3},{2,3},{6,7},{6,9},{7,9},{1},{2},{3},{6},{7},{9}}

a) Is (E,I1) an independence system?

b) Is (E,I2) an independence system?

Problem 3 (Independence Systems II):
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Is (E,I) an independence system?

Problem 4 (Independence Systems II):

Is (E,I) an independence system?

Problem 5 (Matroids): Let E2 = {1, . . . ,7} and
I3 = {{1,2,3},{1,2,5},{1,2,6},{1,2,7},{1,3,4},{1,3,6},{1,3,7},{1,4,5},{1,4,6},
{1,4,7},{1,5,6},{1,5,7},{2,3,4},{2,3,5},{2,3,7},{2,4,5},{2,4,6},{2,4,7},{2,5,6},
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{3,4,5},{3,4,6},{3,5,6},{3,5,7},{4,5,7},{5,6,7},{1,2},{1,3},{1,4},{1,5},{1,6},
{1,7},{2,3},{2,4},{2,5},{2,6},{2,7},{3,4},{3,5},{3,6},{3,7},{4,5},{4,6},{4,7},
{5,6},{5,7},{6,7},{1},{2},{3},{4},{5},{6},{7},∅}

a) Is (E2,I3) an independence system?

b) Is (E2,I3) a matroid?

Problem 6 (Matroids II):

Is (E,I) a matroid?

Problem 7 (IS and matroids): Consider the following system: We are given a
ground set, consisting of circles with uniform radius in the plane. For an example:

A

FED

B

C

We say that a selection of some of these circles is independent, iff no two of them
intersect. For example, {C,D} is independent, but {E,F} is dependent.

a) Prove that this system is an independence system for any given ground set of
circles.
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b) Find a nonempty example of circles for which the system is a matroid (and prove
it).

c) Find an example of circles for which the system fulfills these criteria:

• It is not a matroid (prove it).

• All bases have the same size k, with k ≥ 3.

Problem 8 (Algorithm 8.7, Ford-Fulkerson):
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Figure 1: The network (G,u, s, t). The numbers at the edges give the capacities

Use the algorithm by Ford and Fulkerson to determine a maximum s − t-flow in the
network (G,u, s, t). Give the residual graph in each step.
In addition: give a minimum cut.

Problem 9 (Menger’s Theorem (Menger 1927)):
Two paths P and Q are called edge-disjoint if they have no common edge.
Let G be a graph (directed or undirected), let s and t be two vertices and k ∈ N. Then
there are k edge-disjoint s-t-paths if and only if after deleting k − 1 edges t is still
reachable from s.

Problem 10 (Ford-Fulkerson algorithm and irrational capacities):
Show that the algorithm by Ford and Fulkerson might not terminate when it is applied
to a network with irrational capacities.
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Figure 2: A network with irrational capacities

Consider the network in Figure 2 with capacities u(e1) = 1, u(e2) = σ, u(e3) = 1 und

u(e4) = u(e5) = . . . = u(e9) = 4, with σ =

√
5−1
2 . First show σn

= σn+1
+ σn+2.

(Hint: Consider the paths P1 = {e4, e2,
←
e3, e1, e9}, P2 = {e5, e3,

←
e2, e7}, P3 = {e6,

←
e1, e3, e8}

und P4 = {e5, e3, e8}. Show by induction that we can change the residual capacities of
e1, e2 and e3 from σn, σn+1 and 0 to σn+2, σn+3 and 0, respectively. Induction base:
augment along P4. Induction step: augment, consecutively, along P1, P2, P1 and P3.)

Problem 11 (Integer Flow): Show Corrolary 8.12 from the seminar: Let N =

(G,u, s, t) be a network. If the capacities u(e) are all integers, then there exists a
maximum flow in N , such that all f(e) are integeres (in particular, the optimum flow
is integer).

Problem 12 (PUSH-RELABEL algorithm): For each proof you can use all the-
orems, lemmata etc. with a smaller number.

(a) Show Proposition 8.20: During the execution of the Push-Relabel algorithm f is
always an s-t-preflow and ψ is always a distance labeling with respect to f . (Hint:
Show that the procedures PUSH and PRELABEL preserve these properties.)

(b) Show Lemma 8.21: If f is an s-t-preflow and ψ is a distance labeling with respect
to f , then

(1) s is reachable from any active vertex v in Gf .

(2) t is not reachable from s in Gf .

(Hint: For (1) consider the set of vertices that are reachable from an active vertex
v. For (2) use contradiciton.)

(c) Show Theorem 8.22: When the algorithm 8.19 terminates, f is a maximum s-t-
flow.

5



(d) Show Lemma 8.24: The number of saturating pushes is at most mn.

Problem 13 (MIN CUT problem): The MIN CUT problem is defined as follows:
INPUT: Network (G,u, s, t).
OUTPUT: An s-t-cut of minimum capacity.

Show how you can compute a MIN CUT in time O(n3
).

Problem 14 (Maximum matching in bipartite graphs):
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Figure 3: A graph.

Use the flow formulation from the lecture to determine a maximal matching in the
graph G from Figure 3. Use your preferred flow algorithm.

Problem 15 (Matching and Vertex Cover):
In bipartite graphs we have ν(G) = τ(G) (see seminar notes). In general: ν(G) ≤ τ(G).

(a) Give a graph with ν(G) < τ(G), more precisely τ(G) = 2 ⋅ ν(G).

(b) Give a graph class with ν(G) < τ(G), more precisely τ(G) = 2 ⋅ ν(G).
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Problem 16 ((Inclusion-wise) maximal matchings):

A matching M0 in a graph G is called (nclusion-wise) maximal, if there is no matching
M in G with M0 ⊂ M . Let G be a graph and M1,M2 two (inclusion-wise) maximal
matchings in G. Show that ∣M1∣ ≤ 2∣M2∣ gilt.
(Hint: Why do the vertices of the matching edges from M1 and M2 each constitute a
vertex cover? Moreover, we showed that every matching is smaller every vertex cover.)

Problem 17 (Perfect matching in bipartite graphs):
A perfect matching M ⊆ E is a set of pairwise nonadjacent edges, where there is exactly
one edge incident to each vertex. Show that in a bipartite graph G = (V,E) with
V = V1 + V2 in which each vertex has exactly degree k ≥ 1, there is a perfect matching.
Use the theorem by Hall.
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