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Problem 1 (Distributed algorithms):

Assume all vertices have an ID, but they can only apply the operations = and #to these
IDs. Is it possible to solve leader election in this model? (Hint: give a reason for your
answer, not just no/yes.)

Problem 2 (Independence Systems): Let £'={1,...,10} and
7, ={{1,2,3,4},{2,3,4,5},{3,4,5,6},{4,5,6,7},{5,6,7,8},{6,7,8,9},
{7,8,9,10},{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8, },
{7,8,9},{8,9,10},{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},
{8;19},{97 10}, {13, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, 2}

Tr ={{1,2,3},{6,7,9},{1,2},{1,3},{2,3},{6,7},{6,9},{7, 9}, {1},{2}, {3}, {6}, {7}, {9}}
a) Is (E,Z;) an independence system?

b) Is (E,Z;) an independence system?

Problem 3 (Independence Systems II):
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Is (E,Z) an independence system?

Problem 4 (Independence Systems II):
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Is (E,Z) an independence system?

Problem 5 (Matroids): Let Fy ={1,...,7} and
I3 = {{1’273}7{17275}’{17276}7{172’7}7{1’374}7{17376}’{17377}7{174’5}7{1’476}7
{1747 7}7{175’6}7{1’577}7{27374}’{27 37 5}7{273’ 7}7{2’47 5}7{2747 6}’{2747 7}7{275’6}7

2



{3,4,5},{3,4,6},{3,5,6},{3,5,7},{4,5,7},{5,6,7},{1,2},{1,3}, {1,4}, {1,5},{1,6},
{1,71,42,33,{2,43,{2,5},{2,6},{2, 7}, {3,4},{3,5}, {3,6}, {3, 7}, {4,5}, {4, 6}, {4, 7},
(5,63, {5, 73, {6, 73, {1}, {2}, {3}, {4}, {5}, {6}, {7}, 2}

a) Is (Ey,Z3) an independence system?

b) Is (Es,Z3) a matroid?

Problem 6 (Matroids II):
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Is (E,Z) a matroid?

Problem 7 (IS and matroids): Consider the following system: We are given a
ground set, consisting of circles with uniform radius in the plane. For an example:

We say that a selection of some of these circles is independent, iff no two of them
intersect. For example, {C, D} is independent, but {E, F'} is dependent.

a) Prove that this system is an independence system for any given ground set of
circles.



b) Find a nonempty example of circles for which the system is a matroid (and prove
it).

¢) Find an example of circles for which the system fulfills these criteria:

e [t is not a matroid (prove it).

e All bases have the same size k, with k£ > 3.

Problem 8 (Algorithm 8.7, Ford-Fulkerson):
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Figure 1: The network (G, u,s,t). The numbers at the edges give the capacities

Use the algorithm by Ford and Fulkerson to determine a maximum s — t-flow in the
network (G, u,s,t). Give the residual graph in each step.
In addition: give a minimum cut.

Problem 9 (Menger’s Theorem (Menger 1927)):

Two paths P and @) are called edge-disjoint if they have no common edge.

Let GG be a graph (directed or undirected), let s and ¢ be two vertices and k € N. Then
there are k edge-disjoint s-t-paths if and only if after deleting k& — 1 edges t is still
reachable from s.

Problem 10 (Ford-Fulkerson algorithm and irrational capacities):
Show that the algorithm by Ford and Fulkerson might not terminate when it is applied
to a network with irrational capacities.
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Figure 2: A network with irrational capacities

Consider the network in Figure 2 with capacities u(e;) = 1, u(esz) = o, u(esz) = 1 und
u(eq) =ules) =... =u(eg) =4, with o = \/_ L. First show o™ = g™+ + o"+2,

(Hint: Consider the paths P; = {ey4, s, 63,61,69}, Py ={es,e3,¢5,e7}, Py ={eg, €1,€3 €5}
und P; = {es, e3,es}. Show by induction that we can change the residual capacities of
e1, e and ez from o”, o' and 0 to ™2, o3 and 0, respectively. Induction base:
augment along P;. Induction step: augment, consecutively, along P, Py, P; and Ps.)

Problem 11 (Integer Flow): Show Corrolary 8.12 from the seminar: Let N =
(G,u,s,t) be a network. If the capacities u(e) are all integers, then there exists a
maximum flow in N, such that all f(e) are integeres (in particular, the optimum flow
is integer).

Problem 12 (PUSH-RELABEL algorithm): For each proof you can use all the-
orems, lemmata etc. with a smaller number.

(a) Show Proposition 8.20: During the execution of the Push-Relabel algorithm f is
always an s-t-preflow and 1) is always a distance labeling with respect to f. (Hint:
Show that the procedures PUSH and PRELABEL preserve these properties.)

(b) Show Lemma 8.21: If f is an s-t-preflow and ¢ is a distance labeling with respect
to f, then

(1) s is reachable from any active vertex v in Gy.

(2) t is not reachable from s in Gy.

(Hint: For (1) consider the set of vertices that are reachable from an active vertex
v. For (2) use contradiciton.)

(¢) Show Theorem 8.22: When the algorithm 8.19 terminates, f is a maximum s-t-
flow.



(d) Show Lemma 8.24: The number of saturating pushes is at most mn.

Problem 13 (MIN CUT problem): The MIN CUT problem is defined as follows:
INPUT: Network (G, u,s,t).

OUTPUT: An s-t-cut of minimum capacity.

Show how you can compute a MIN CUT in time O(n?).

Problem 14 (Maximum matching in bipartite graphs):

Figure 3: A graph.

Use the flow formulation from the lecture to determine a maximal matching in the
graph G from Figure 3. Use your preferred flow algorithm.

Problem 15 (Matching and Vertex Cover):
In bipartite graphs we have v(G) = 7(G) (see seminar notes). In general: v(G) < 7(G).

(a) Give a graph with v(G) < 7(G), more precisely 7(G) = 2-v(G).

(b) Give a graph class with v(G) < 7(G), more precisely 7(G) =2-v(G).
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Problem 16 ((Inclusion-wise) maximal matchings):

A matching M in a graph G is called (nclusion-wise) mazimal, if there is no matching
M in G with My ¢ M. Let G be a graph and M;, M, two (inclusion-wise) maximal
matchings in G. Show that |M;| < 2|M,| gilt.

(Hint: Why do the vertices of the matching edges from M; and M, each constitute a
vertex cover? Moreover, we showed that every matching is smaller every vertex cover.)

Problem 17 (Perfect matching in bipartite graphs):

A perfect matching M ¢ F is a set of pairwise nonadjacent edges, where there is exactly
one edge incident to each vertex. Show that in a bipartite graph G = (V,E) with
V =V; + V5 in which each vertex has exactly degree k > 1, there is a perfect matching.
Use the theorem by Hall.



