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Abstract

Analysing multivariate data is a difficult task. Extensive
interaction with the data is often necessary and, hence, the
analysis can be quite time consuming. In this paper, we
introduce a method to allow the user to simultaneously ex-
amine the relationships of a single dimension with many
others in the data. The single dimension can then be in-
teractively changed to allow the user to quickly examine
all possible combinations. This method is achieved by ex-
tending the standard parallel coordinate approach to a 3-
dimensional clustered multi-relational parallel coordinate
representation (CMRPC). To aid this method, we use a tech-
nique called relation spacing which is used to position the
axes according to how ‘interesting’ the different relations
are. We also propose a number of interaction techniques to
further facilitate the analysis process.

1 Introduction

Exploratory data analysis is the process of examining
data without knowing exactly what relationships or anoma-
lies will be found. Since this often requires the user to try
out several different approaches, this task is typically sup-
ported by a number of techniques for visualizing and inter-
acting with the data. Such techniques exist in a wide range
of areas, see for example, [6, 16, 15]. For data sets of up
to 3 dimensions there are numerous standard methods that
can be applied such as scatter plots, line plots, bar plots,
pie charts, etc. When dealing with data of higher dimen-
sions, (typically 6 dimensions and above) other visualiza-
tion techniques must be applied (see [2] for an overview).
Of the existing multivariate visualization techniques, paral-
lel coordinates [14, 13] is one of the most frequently used
and is the technique we also have chosen to build upon.
Parallel coordinates transforms N -dimensional data into a
2-dimensional representation making it possible to simulta-
neously perceive the relationships present between the di-

Figure 1. The clustered multi-relational paral-
lel coordinates technique (CMRPC) allows for
a simultaneous one-to-one relation analysis
between the ‘focus’ dimension in the centre
and all other dimensions.

mensions mapped to adjacent axes.
Despite the popularity of parallel coordinates, the tech-

nique is not without limitations. One disadvantage concerns
the number of observations that it is possible to simultane-
ously display: visualizing a medium or large data set will
inevitably cause cluttering. To get an overview of the data
a commonly used approach is to perform an initial cluster-
ing of the data and, instead of visualizing each single ob-
servation, each cluster is visualized. Another disadvantage,
which is the focus of this paper, is that the parallel axes
configuration only permits analysis of correlations between
adjacent axes. To examine all possible combinations can
therefore be time consuming and quite tedious work.

In this paper we extend traditional 2-dimensional paral-
lel coordinates to 3-dimensional clustered multi-relational
parallel coordinates (CMRPC) (figure 1). This technique
allows for complementary analysis of, and interaction with,
larger multivariate data sets compared to standard parallel
coordinates. To aid this visualization technique, we also in-



troduce a method called relation spacing. This method is
used to position the axes according to how ‘interesting’ the
different relations are. In this context, a relation means the
relationship between a single pair of dimensions. We also
propose a number of interaction techniques to further facil-
itate the analysis process.

The remainder of this paper is organized as follows. In
section 2 we review the related work concerning clustering
in parallel coordinates as well as previous efforts made to
extend the parallel coordinates technique itself. Section 3
deals with the concept of clustering and how a cluster is
represented in the parallel coordinates display. Section 4
describes how the CMRPC visualization technique is cre-
ated and the supported interaction techniques. In section 5
we describe our method for relation spacing. In Section 6,
we present our conclusions and discuss our future research
work.

2 Related Work

Several efforts have been made to extend the standard
parallel coordinates technique to display and analyse the re-
sults produced by different clustering algorithms.

Fua et al. [7] propose a multiresolutional view of the
data via hierarchical clustering. Each cluster is visualized
as a band faded from a completely opaque centre to a trans-
parent edge. Berthold and Hall [3] use fuzzy rules to first
cluster the data and then use parallel coordinates for dis-
playing and analysing the result and their visualization is
similar to the one presented in [7]. They use a solid line to
represent the centre of each cluster and use the centroid of
the cluster as the centre value. They also use a fading re-
gion but this shows the decline in membership of each ob-
servation. Andrienko and Andrienko [1] suggest “striped”
envelopes and ellipse plots as two methods for displaying
properties and structure of subsets in parallel coordinates.
Both of these methods are based on dividing the value range
of each axis into equal frequency intervals. A disadvantage
of both methods is that they convey information about each
variable independently of each other, hence it is not possible
to investigate relationships between pairs of attributes. An-
other approach, based on the concept of representing each
cluster as an envelope or polygon, is presented by Novotny
[17]. He also uses a striped texture to further help the user
distinguish between the different clusters.

Besides the efforts made to display large data sets in
parallel coordinates, techniques have been proposed to ex-
tend the parallel coordinates technique itself. Hoffman et
al. [12] proposed a variation of parallel coordinates with
radial axes. This technique has the advantage that no axis
is at the end, making analysis easier. Wegenkittl et al. [19]
extended standard parallel coordinates to 3 dimensions for
analysing and visualizing the behaviour of trajectories of

high-dimensional dynamic systems. They introduced “ex-
truded” parallel coordinates and 3-dimensional parallel co-
ordinates. Extruded parallel coordinates are constructed by
moving the parallel coordinate system in the third spatial
axis, hence it is possible to have different parallel coordi-
nate systems for each observation. The 3-dimensional par-
allel coordinates is based on linking parallel planes instead
of parallel lines. Falkman builds on the work in [5] and also
uses parallel planes instead of parallel lines to analyse large
amounts of clinical data. He also introduces methods for ar-
ranging the planes, as well as the lines to reduce the clutter
when dealing with larger data sets.

3 Clustering in Parallel Coordinates

A clustering algorithm aims at grouping data items so
that data items in a cluster are as similar as possible and as
different as possible from data items in the other clusters.
We choose to use the K-means algorithm [10, 11], a simple
and very well-known partitioning clustering algorithm, to
cluster the data prior to visualization.

Representing a cluster with a coloured polygon in the
parallel coordinates display gives, for a large data set, a
huge performance advantage. This gives a good overview
of the data set but the structure within the clusters is lost.
On the other hand, colouring all observations that belong to
the same cluster with the same colour makes it possible to
see the individual lines and at the same time get informa-
tion about their cluster membership. For a large data set,
however, this would require far too large a number of lines
to be rendered resulting in a non-interactive visualization.
Selection and manipulation of the clusters could therefore
not be interactively performed. To deal with this problem,
we use a two-dimensional alpha-texture which is created
as a pre-processing step using graphics hardware. As done
in [20] we draw each line with a user-defined transparency
value and use additive blending. This reveals the structure
since high density regions will be more opaque than sparse
regions. The final result is produced by applying the alpha-
texture to a coloured polygon.

In the parallel coordinates display, the polygon used to
represent each cluster can either be a uniform band dis-
played at the position of the cluster centroid or be of the
clusters true size. For the uniform band, the relative width
W is calculated according to W = C

Cmax
κ, where C is the

population of the current cluster, Cmax is the population of
the largest cluster and κ is a scaling factor. To maximize
the visual separation between the colours of each cluster
we use the hue, saturation and intensity (HSI) colour model
[8]. The saturation and intensity component is set to a fixed
value and the angle, φ, between each hue component is cal-
culated as φ = 2π

P , where P is the number of clusters.
The advantage of this method is that we now only need to



(a) Miles per gallon (b) Horsepower (c) Weight

(d) Acceleration (e) Cylinders (f) Year

Figure 2. Analysing all possible relations amongst N dimensions. Figures (a–f) show the corre-
sponding focus dimension of the cars data set.

render one polygon for each axis pair and cluster, resulting
in a highly interactive visualization environment. In order
to fine-tune the visual appearance of the cluster structures,
the transparency and width of each line that constitutes the
structure within each cluster together with the cluster width
can be interactively changed during runtime.

4 3-Dimensional Multi-Relational Parallel
Coordinates

In contrast with standard parallel coordinates, where all
axes are mapped to a plane, the CMRPC has the axes
mapped onto a cylinder with one axis at its centre (here-
inafter referred to as the ‘focus’ dimension). This visual-
ization technique allows a simultaneous one-to-one relation
analysis between the focus dimension and the other N − 1
dimensions mapped to the cylinder. The axes are positioned
according to a user-defined radius and a fixed angle, that is
equal spacing between all axes. The angle, α, is simply
calculated as α = 2π

N−1 .
Any of the other dimensions can, with a single mouse

click, be made the focused dimension. This technique
makes it possible to analyse all possible relations in only
N − 1 visualizations. An illustration of this can be seen in
figure 2 where the well-known cars data set [18] is visual-
ized.

The dilemma of simultaneously perceiving a high num-

ber of dimensions is also a problem in the CMRPC display.
We have found the upper limit for the number of dimen-
sions that easily can be perceived and distinguished to be
somewhere between 15-20. However, this upper limit is ex-
tremely dependent on the structure of the data and the num-
ber of clusters chosen. It is also dependent on the radius of
the cylinder and, hence, the resolution of the screen. When
visualizing a data set with a larger number of dimensions,
we apply relation fading which allows the user to interac-
tively fade relations and an illustration of this is shown in
figure 3. In this example, 6 of the 12 relations between the
focus axis and the other axes of a data set have been faded.
The relation fading is performed with a single mouse-click
on the axis and each relation can individually be faded or
switched back to full opacity. Since the relations are faded,
rather than completely turned off, they are always visible to
the user and hence the overview is at all times preserved.
Fading relations is something that would not serve any pur-
pose in standard parallel coordinates since no more space
would be released. In standard parallel coordinates, the al-
ternative to the relation fading is to either completely re-
move an axis or to decrease the spacing between adjacent
axes. This first alternative does not preserve the overview
which is something the second technique does but at the
cost of increased cluttering.

By displaying the intra-cluster structure we always have
access to the original data items and, at the same time, have
an overview of the data. Thus, we provide a kind of fo-



Figure 3. Interactive fading of every second
relation helps prevent cluttering.

cus+context concept [4, 9]. For a more detailed analysis it
is possible to highlight a single cluster to further examine its
structure. The remaining cluster bands are then made highly
transparent. Figure 4 shows the selected cluster represented
at its true size in the CMRPC.

5 Spacing of Relations

Instead of positioning each axis according to a fixed an-
gle, the position can be used to represent a certain feature
of the relation, referred to as relation spacing. We use cor-
relation analysis to define how ‘interesting’ a relation is and
calculate the correlation coefficient between the focus di-
mension, x, and all other dimensions, y1,..,N−1. We use the
absolute value of Pearson’s correlation coefficient

ρj =

∣∣∣∣∣∣
∑M

i=1((xi − x)(yij − yj))√∑M
i=1(xi − x)2

∑M
i=1(yij − yj)2

∣∣∣∣∣∣ , (1)

where x is the sample mean of the xi values (focus dimen-
sion), yj is the sample mean of the yij values (the jth di-
mension) and M is the number of observations in the data
set. We use the absolute value, since we are only interested
in the magnitude, not the sign of the correlation. This means
that ρj will take on values in the range of 0 ≤ ρj ≤ 1. We
calculate the perceptually adjusted (square root) and nor-
malized ρ′j according to

ρ′j =
√

ρj∑N−1
i=1

√
ρi

. (2)

Figure 4. Selecting a cluster in the CMRPC
display. The remaining cluster bands are
made highly transparent. In this example, the
clusters are represented at their true size.

Taking the square root of the correlation gives a better dis-
tribution between the different correlation factors. We have
found that, without the square root, a relation having a sig-
nificantly larger correlation than the rest will tend to dom-
inate the display. The angle, α, between dimensions j and
j + 1 is then calculated as

α = 2π
ρ′j + ρ′j+1

2
. (3)

The more interesting the relation, the more space is al-
located on each side of the corresponding dimension. The
method also takes the neighbouring relations into consid-
eration so that two correlated neighbouring relations have
more space between them than between one correlated and
one uncorrelated. This technique is partly similar with the
one proposed by Yang et al. [21]. They use correlation
analysis as a method for calculating similarities between di-
mensions, but for 2-dimensional parallel coordinates. How-
ever, they do the opposite, namely putting similar axes close
to each other. This approach does convey the measure of
correlation between dimension pairs but our aim is to also
avoid cluttering of the parallel coordinates display to which
their method is prone. To perceive the magnitude of each
relation correlation, a multi-coloured circle can be enabled
and displayed at the bottom of the CMRPC. Figure 5 illus-
trates the result of applying relation spacing when visualiz-
ing three different data sets with the CMRPC technique.

6 Conclusions and Future Work

In this paper, we have extended standard parallel coor-
dinates to 3-dimensional clustered multi-relational parallel
coordinates (CMRPC) and proposed a method for relation
spacing.



(a) (b) (c)

Figure 5. Relation spacing applied to three different data sets. The greater the space is on each
side of an axis, the more correlation exists between that dimension and the focus dimension. The
coloured circle at the bottom reveals each relation’s space. In figures (a–c), housing, pollution and
meteorological data sets are visualized. In (b) a particular cluster has been selected for a more
detailed analysis.

The CMRPC visualization technique has the axes
mapped to a cylinder, with a ‘focus’ dimension in the cen-
tre. This makes it possible to simultaneously analyse the
relationship between the focus dimension and all other di-
mensions. In the CMRPC it is possible to either position all
axes with equal spacing, treating all relations between the
focus dimension and the other dimensions the same, or to
use variable spacing, taking the correlation with the focus
dimension into consideration. This method maps each axis
with a space to its neighbouring axes according to the mag-
nitude of the correlation. By doing this, the user’s attention
is attracted to the highly correlated relations providing more
space for analysis. By allowing for techniques such as inter-
active axis rearrangement and relation fading, we provide a
highly interactive visualization environment for exploratory
analysis of multivariate data.

We find the CMRPC to be an excellent extension of
standard parallel coordinates because it enables an intu-
itive multiple one-to-one dimension analysis of multivariate
data, which is something that the standard parallel coordi-
nates is unable to do. Analysing all possible relations is
done in N − 1 visualizations, a task that would be much
more time consuming to do with standard parallel coordi-
nates. By combining the CMRPC technique with our cluster
representation technique, we are able to interactively anal-
yse medium as well as large data sets.

We see no limit to the applications of the CMRPC tech-
nique, every time a user needs to investigate the relation-
ship between one variable and many others, this visualiza-
tion technique can be applied.

For our future work, we would like to investigate if other
measures, besides correlation, may be used for spacing the
relations. It is also of interest to investigate if other interac-
tion techniques could be supported.
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