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Abstract

In recent years, several different attempts have been made to extend the well-known technique of parallel

coordinates by using a 3D display. This article presents an evaluation that investigates the performance

of the 3D parallel coordinates technique and compares it with standard, 2D parallel coordinates for

analysis of 2D relationships. 3D parallel coordinates, based on parallel planes instead of parallel axes,

has been used for many years within the information visualization community for a variety of applications.

Despite its quite common use no formal evaluation detailing its usefulness for different tasks has been

conducted. The evaluation presented in this article is the first step towards determining the usefulness of

this type of 3D parallel coordinates. The study compared 3D parallel coordinates, using two different axis

configurations commonly seen in the literature, with standard 2D parallel coordinates for identification

of 2D relationships between variables in multivariate data. This type of task and the relationships to

be judged are known to be well supported by 2D parallel coordinates and multi-relational 3D parallel

coordinates. The results show, that for identification of 2D relationships, 2D parallel coordinates are

superior to the 3D extensions, both in terms of response time and accuracy. Subjective opinions were

also in favour of 2D parallel coordinates. The study adds to the much-needed body of work examining

the usability of 3D representations in information visualization and for what tasks and data a proposed

method is or is not appropriate.
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1 Introduction

Parallel coordinates are commonly used within the information visualization community for the display

of multivariate data. The technique was proposed by Inselberg for analysis of hyperdimensional geome-

try.1,2 Parallel coordinates were later used for analysis and visualization of abstract, multivariate data

(see, for example, the work by Wegman3) and today the technique is considered to be a standard method

within this field. During the last 20 years parallel coordinates have been the target of many research

projects, primarily within the information visualization community. It has also been adopted within

scientific visualization and the more recent research field of visual analytics, with numerous application

areas such as bioinformatics, medicine and climate science. The technique is today also incorporated in

several commercial applications and frameworks, making it available to a large number of users.

A major part of the research on parallel coordinates has aimed at investigating different axis config-

urations. In parallel coordinates the variables of a data set are represented as parallel axes and each

data item is represented as a polyline intersecting all axes at their corresponding values. A popular

approach is to extend standard, 2D parallel coordinates to a 3D representation based on the assump-

tion that by adding a third dimension more relationships can be conveyed simultaneously, thus more

information about structures in the data can be investigated. The concept of 3D parallel coordinates

was proposed by Wegenkittl et al.4 This method, where parallel planes instead of parallel lines, are

linked (see figure 1) was the original version that was called 3D parallel coordinates and is the one

most commonly seen today. Since then, different variations of this technique have been proposed (see

review in the related work section). In this article, the focus is on the originally proposed 3D parallel

coordinates technique. Figure 1 illustrates the standard 2D technique with two common 3D extensions

using different axis configurations. The basic idea is to extend the one-dimensional axes of standard, 2D

parallel coordinates, figure 1(left), into two-dimensional planes where each plane is composed of two axes

(variables). In figure 1(middle) each plane is constructed using different variables (V1, V3 and V2, V4)

while in figure 1(right) both planes share one common variable, V3 (extended outwards from the screen,

towards the user). The variable(s) used for the third dimension will, hereinafter, be referred to as the

Z−variable(s). A screen shot of 3D parallel coordinates with four planes using the different Z−variable

configuration, displaying eight variables, is shown in figure 2.



Insert figure 1 about here.

Insert figure 2 about here.

The motivations behind extensions of parallel coordinates into 3D often seem quite legitimate: adding a

third dimension makes it possible to allow more information to be simultaneously analysed. However the

addition of a third dimension has inherent problems, such as clutter, and we need to be aware of possible

misleading distortions and take into consideration how these may affect the usability (effectiveness and

efficiency6) of the representations.5 There are certain conditions where a third dimension is beneficial

and others where it will make the representation useless. Different axis arrangements, the amount of

information presented in one view, the amount of noise in data and the perspective view are examples of

crucial features in visualization that influence the relative usability of each representation for each user

task.

With respect to the large number of research papers proposing extensions of standard, 2D parallel coor-

dinates into 3D, a very limited number address such usability aspects by providing scientific evaluations.

As a matter of fact, to the best of our knowledge, no research paper exists that presents a scientific

evaluation of the originally proposed 3D parallel coordinates technique, described above. This lack

of justification of the proposed technique should be a major concern within the information visualiza-

tion community. From a visualization perspective, a lack of knowledge and results about users’ actual

performance when using 3D parallel coordinates under different conditions means that we can expect

them to misinterpret data or to overlook features in data that actually exist and are being presented.

Evaluation is necessary in order to understand and communicate the potential and limitations of 3D

parallel coordinates. In general, evaluation will advance information visualization research by promoting

promising research ideas and also preventing less promising ideas from being accepted as valid ones to

be expanded upon. This is also how we can present evidence of measurable benefits that will encourage

more widespread adoption by real users.7

The main aim of this article is to add to this essential body of knowledge by presenting an evaluation



that investigates the usability of 3D parallel coordinates compared with standard 2D parallel coordinates

for identification of 2D relationships (patterns) between variables. The reason for focusing only on 2D

patterns as reference patterns is that it is not possible to construct unique patterns in a 3D display

of parallel coordinates due to the fact that they are the result of the current projection (rotation). In

addition, 2D patterns have a clear mathematical description, via the point←→line duality,1 and are the

patterns for which users often search when using parallel coordinates. More complex multidimensional

patterns are the subject for future studies, as discussed in the future work section. The key research

contributions of this article are:

• An investigation of the usability of 3D parallel coordinates using two different axis configurations

(common Z−variable and different Z−variables) for 2D pattern identification.

• A comparison of 3D parallel coordinates versus 2D parallel coordinates

• Dissemination of the need and importance of scientific evaluation in visualization.

The remainder of the article is structured as follows. The next section presents and discusses related

work on 3D parallel coordinates and issues on usability and evaluation relevant to the research presented

in this paper. The following section describes, in detail, the evaluation and the experimental method

applied in this study. The final sections discuss the general results, our conclusions and outlines some

issues to be considered in future research.

2 Related Work

Parallel coordinates is a highly active field of research which generates a large number of publications

each year. Consequently, this related work section does not attempt to cover a full review of the topic. It

has a strict focus on, and discusses in detail, the many 3D extensions of parallel coordinates that relate

to this work. It also covers the most related evaluation studies within this area. Regarding 2D parallel

coordinates we refer the interested reader to the vast amount of literature published by the information

visualization community.



2.1 3D Parallel Coordinates and Their Variations

The concept of using 3D parallel coordinates was introduced in 1997.4,8 This method, where parallel

planes instead of parallel lines are linked, see figure 1(middle,right), was the original version that was

called 3D parallel coordinates and is the one most commonly seen today.

Since 3D parallel coordinates were introduced, different variations have been proposed by researchers for

use in various domains. Falkman developed the ‘Cube’ specifically for pattern recognition and statistical

analysis of patient medical records.9,10 With a similar goal, Pham and Cai11 presented a version of

3D parallel coordinates for analysis of clinical data in Chinese medicine. Using the same 3D parallel

coordinates technique, Rübel et al.12,13 investigated its use within Biology and Genetics. Their main

aim is to support the biologist studying gene expression patterns. Cvek et al.14 also use a version of

3D parallel coordinates, coupled with self-organizing maps, for analysis of expression data. Streit et

al.15 proposed a version for visualization of multidimensional data in the field of Cytomics. Another

area where extensions of 2D parallel coordinates into 3D have been proposed is within the analysis and

exploration of complex networks. Ahmed et al. use extended parallel coordinates as a main component

in the system GEOMI.16 In a similar way, Dwyer et al. use it for analysis of network centrality.17 In a

recent article, Viau et al. include a version of 3D parallel coordinates in their system for visualization of

multivariate networks.18

Another example of work on extending parallel coordinates into 3D, however not tied to any specific

application area, can be found in the work by Honda and Nakano.19 The focus of their research is on using

the third dimension to increase the number of simultaneously displayed relationships in multivariate data.

Similar versions have also been used to avoid over-plotting by stacking20 and for analysis of time-varying

data.21,22

Instead of extending parallel coordinates to parallel planes a circular axis arrangement can be used. A

3D multi-relational parallel coordinates technique was proposed by Johansson et al.23 that allows a

simultaneous analysis of the relationships between a focus variable and all other included variables. A

different approach was taken by Fanea et al.24 where parallel coordinates are unfolded, resulting in a

circular view with the aim of reducing visual clutter.



Of the many extensions of standard 2D parallel coordinates into 3D, the majority are identical or share

their main characteristics with the originally proposed 3D parallel coordinates technique being evaluated

in this article.

2.2 Evaluation

As reported in the previous section, a large number of 3D extensions of parallel coordinates exist. These

are presented as visualization tools for a large number of application domains and all assert that adding

an extra dimension is valuable and adds beneficial features to users. That they are subject to any form of

evaluation in order to confirm this, on the other hand, is not as common. In the literature a few evaluation

studies can be found, but most of them are not directly related to the work in this article since they

concern various aspects of standard 2D parallel coordinates,25–27 not comparing parallel coordinates in

2D and 3D. In fact, as far as the authors are aware, no formal evaluation has been made of the originally

proposed 3D parallel coordinates technique under study in this article. The only evaluations found are

by Forsell and Johansson28 comparing 3D multi-relational parallel coordinates with standard 2D parallel

coordinates for typical tasks in exploratory visualization and by Johansson et al.29 which investigates

perceivable thresholds of noise and viewing angle in 2D and 3D multi-relational parallel coordinates.

Both evaluations concern the multi-relational parallel coordinates technique introduced by Johansson et

al.,23 not the one evaluated in this article which is the foundation for most of the 3D techniques found

in the literature and which are still being expanded upon.

3 Evaluation of 2D and 3D Parallel Coordinates

The aim of the present study is to evaluate the usability of 3D parallel coordinates and we investigate

the ability of humans to perceive 2D relationships (patterns) in 3D parallel coordinates using different

axis configurations. More specifically, the experiment compares 3D parallel coordinates with a common

Z−variable (figure 1(right)) and 3D parallel coordinates with different Z−variables (figure 1(middle))

and we compare them with their corresponding 2D representations. For the comparison to be as fair as

possible, the same number of variables is always used in the 2D and 3D representations. For this first



user study of 3D parallel coordinates the smallest possible number of variables was used, which is three

for the common Z−variable configuration and four for the different Z−variables configuration. The

motivation for this was to construct the visual stimuli to be as simple and straightforward to identify as

possible. Adding more planes to the visual representations would potentially increase their complexity

and make the identification and interpretation of patterns more difficult.

3.1 Task

To assess our capacity to perceive patterns represented in different types of parallel coordinates repre-

sentations (2D and 3D) a judgement situation to be performed as a discrimination task was created.

The participants were required in any individual experimental trial, to identify a stimulus pattern. Here,

a pattern means a relationship in data created between a single pair of axes in a 2D parallel coordinates

visualization (figure 3) or between a pair of planes in a 3D parallel coordinates visualization (figure 4).

This pattern to be identified could be any one of the five different 2D reference patterns illustrated in

figure 3. Any other pattern appearing in a representation (both 2D and 3D parallel coordinates showed

more than one pattern at a time) was considered as a distractor. The starting view of the 3D represen-

tation was slightly rotated in order to clearly illustrate the 3D view. In the 3D representation the task

could require the participant to interact with the visualization in order to get the ‘best’ view. These

modifications were executed by rotating the visualization by moving a mouse horizontally or vertically

with the left mouse button pressed. Rotation was constrained such that it was not possible to flip the

representation upside down. This was implemented to prevent disorientation of the user and thus avoid

complicating the execution of the task in a way that would confound the study. Rotation in the 3D

representations was also restricted such that it was not possible to create a 2D view, forcing the partic-

ipants to view the patterns in 3D. The reason for this was that the study aims at explicitly comparing

2D and 3D. Figure 5 illustrates the rotational restrictions. Pilot studies indicated that a restriction of

15 ◦ was necessary to prevent users from seeing the display as a 2D view. From an experimental point

of view these facts could be considered as confounding factors jeopardizing the validity of the results.

Also, it could be argued that since a 3D representation requires interaction the comparison between 2D

and 3D is not just. However, these facts lie in the nature of the differences between these two type of

representations and are therefore representative of their behaviour in real situations.



Insert figure 3 about here.

Insert figure 4 about here.

Insert figure 5 about here.

3.2 Experimental Design

The study was designed as a three factor mixed design with visualization method (2D versus 3D) as a

within subject factor. The between subject factors were type of axis configuration (common Z−variable

versus different Z−variables) and order of presentation of visualization method. Half of the participants

started with the 2D visualization and half of them started with the 3D visualization. In each visualization

method the five patterns appeared eight times each in a randomized order. This design yielded a total

of 80 trials per participant (2x5x8).

3.3 Stimuli

To create the patterns used in this study a synthetic data set was used. This was constructed such

that it featured five pair-wise mathematical relationships: a negative linear relationship, a negative

linear relationship with a discontinuity, and sinusoidal relationships with one, two and three periods

respectively. In figure 3 the patterns are illustrated as they appear in a 2D frontoparallel representation

and figure 4 shows an example of a 3D representation. The five patterns were formed by the rendering

of 300 lines which is sufficient to clearly discriminate between the different patterns but small enough

not to introduce any cluttering artefacts which are known to commonly occur in parallel coordinates.

Hence, the present study is not investigating the scalability of 3D parallel coordinates for large data sets.

This matter is further discussed in the section on future work. The lines were rendered semi-opaque



and additively blended in order to make overlaps more visible. This is a common technique which is

extensively used today and was first explored together with parallel coordinates by Wegman and Luo in

1997.30

Depending on how the axes were positioned with respect to each other, a stimulus pattern could be

mirrored. These two patterns (the stimulus pattern and its mirror reflection) differ only in orientation

and were to be regarded as one and the same pattern, see figure 6. The data set and the mathematical

relationships were constructed in an earlier work and for a complete mathematical description and further

details see Forsell and Johansson.28 The motivation for using these patterns was twofold. First, this type

of evaluation requires clearly defined answers and it is vital to have full control over the patterns. This

implies that the data set used needs to include patterns that are well defined and thus can be identified

by the participants in an experiment without interference from other factors.31 Second, previous work

has shown that there are no differences between the individual patterns, that is that none of them is

more easy or more difficult to identify than the others. This has been shown for clean patterns and

for patterns distorted by noise 29 and by different perspective viewing angles,29 and also when using

a usability criterion of efficiency that restricts the actual viewing time of a pattern.29 Altogether, this

means that the object under test in this study is the difference between type of visualization method

(2D and 3D) and not any other factors that relate to the nature of the data. It should be noted that the

reason for only using 2D patterns as reference patterns is that it is not possible to construct representative

patterns in a 3D display of parallel coordinates due to the fact that they are the result of the current

projection (rotation). Even a slight change in rotation angle could completely change the appearance of

a pattern, thus patterns in a 3D display can not be used as reference patterns. In addition, 2D patterns

have a clear mathematical description, via the point←→line duality,1 and are the patterns for which

users often search when using parallel coordinates.

Insert figure 6 about here.

For 3D parallel coordinates with a common Z−variable a pattern was displayed between two planes of

which one is constructed between variables V1 and V3 and one between variables V2 and V3, meaning

that both planes share the common variable V3, as illustrated in figure 7 (top-right). This 3D parallel



coordinates setup with three variables is the smallest possible subset, using only a single pair of planes,

of the example representation shown in figure 2. In the 2D visualization each stimulus display was

also comprised of three variables (V1, V2, V3), in a parallel arrangement. Between each pair of variables

a pattern was depicted (see figure 7 (top-left) for an illustration). The target pattern could appear

between any of the axes but its actual location was not relevant. Screen shots from the experiment are

shown in figures 7 (bottom-left) and 7 (bottom-right).

Insert figure 7 about here.

For 3D parallel coordinates with different Z−variables a pattern was displayed between two planes of

which one is constructed between variables V1 and V3 and one between variables V2 and V4, see figure 8

(top-right). Similar to the common Z−variable condition this 3D parallel coordinates setup with four

variables is the smallest possible subset, using only a single pair of planes, of the example representation

shown in figure 2. In the 2D visualization each stimulus display included four variables (V1, V2, V3,V4)

in a parallel arrangement, see figure 8 (top-left) for an illustration. As with the setup described above,

the target pattern could appear between any of the variables but its actual location was not relevant.

Screen shots from the experiment are shown in figures 8 (bottom-left) and 8 (bottom-right).

Insert figure 8 about here.

3.4 Participants

24 participants took part in the experiment, 17 male and 7 female. They were all students or staff

at Linköping University in Sweden, aged between 22 and 45 with a median age of 27. Some of the

participants were familiar with the traditional 2D parallel coordinates representation but none of them

were familiar with the kind of 3D representation used in the experiment. These differences should not

affect the outcome of the study since the nature of the task is related to perception rather than expertise

in visualization. Still, great care was taken (training and balancing of order) to prevent this aspect from



having any negative effect as further described in the following sections. The participants had no prior

knowledge of the purpose of the experiment. All of the participants declared that they had normal, or

corrected to normal, vision and normal colour vision. They received a small compensation for taking

part in the experiment.

3.5 Apparatus and Viewing Setup

The experiment was carried out using a MacBook Pro connected to an external display set with a

resolution of 1920 x 1200 pixels. The patterns were displayed through a program that showed each

stimulus against a black background. Each participant was seated in front of the screen at a standard

viewing distance of approximately 60 cm. The viewing position was unrestricted, though the chair was

adjustable and the participants were assisted to adjust their viewing position such that their eyes were

centred on the screen. The participants interacted with the program by means of an external keyboard

and mouse.

3.6 Procedure

First, demographic background information was obtained from the participants regarding their age,

sex, profession and experience in visualization. Participants then reviewed written instruction materials

before the actual sessions in front of the computer began. The experiment consisted of two sessions, one

for each visualization method. Each session, in turn, was divided into two parts: an introduction and

training part for familiarizing the participant with the task and the experimental timed trials part. The

participants were shown printed images representing the five patterns included in the task. They were

extensively instructed about the specifics of each reference pattern and how distortions in the 3D viewing

condition may affect their appearance in order to understand the concept. They also completed a block of

practice trials. The instructor assisted the participants when needed during the training trials to resolve

any confusion about how to operate the software and carry out the task. The participants’ task in any

individual trial was to examine the displayed data and respond to which of the five possible standard

reference patterns was the target pattern of each trial. The sequence of the trials was self-paced and



the participants controlled the screen by pressing the space bar when they wished a trial to begin. Each

experimental session began with a blank image appearing on the screen. Pressing the space bar caused

the first stimulus to appear which remained until a response was given. This completed a trial and the

blank screen reappeared and the experiment continued. To register a response the participant used the

numbers 1–5 on the numerical keyboard. Each number corresponded to one of the five possible standard

reference patterns. These were depicted and enumerated on the instructional materials. Accuracy and

response times were recorded for each trial. No feedback was provided. Participants were instructed

that although being timed they should be as accurate as possible. They were also informed that their

answers could not be changed.

After each separate part participants answered questions regarding how confident they were in leaving

their responses with the 2D representation and the 3D representation respectively. They responded to

the questions using a Likert scale that ranged from 1 (not confident at all) to 5 (very confident), the full

range is presented in section 3.7. A full experimental session lasted approximately 45 minutes (including

introduction and training).

3.7 Results

Data from all 24 participants were analysed. Dependent measures were compared with Analysis of Vari-

ance (ANOVA). When data did not adhere to the assumptions for this parametric test, non-parametric

tests were used. For all statistical analysis, alpha levels of significance were p <0.05.

The response time data was analysed with a mixed ANOVA. There was a significant main effect of visu-

alization method (F (1, 20) = 67.187, p <0.05). The mean response time for the 2D condition was 3.39 s,

with a standard deviation of 1.26 and in the 3D condition the mean was 24.96 s, standard deviation 13.22.

No significant main effect was found between the different axis configurations (common Z−variable and

different Z−variables), nor any interaction between visualization method and axis configuration. There

was no significant effect of presentation order and no other significant interaction. The findings are

illustrated in figure 9 and table 1. For simplicity both the 2D and the 3D conditions are referred to as

common Z−variable and different Z− variables although, of course, 2D parallel coordinates do not have



a third (Z−variable) dimension.

Insert figure 9 about here.

Insert table 1 about here.

When analysing the error data, for each participant the error rate in percentage was calculated and these

values were then used as dependent measures for further analysis. The results from these analyses are

illustrated in figure 10 and table 2. The distribution of the errors deviated from a normal distribution

(by means of the Shapiro-Wilks test, p >0.05) and subsequent tests were therefore performed using non-

parametric methods (Mann-Whitney and Wilcoxon signed ranks test). First the errors for the different

main conditions were analysed. The 3D representations produced significantly more errors (median

value of 42.50%) than the 2D representation (median value of 0%) and the difference was significant,

z = -4.290 p <0.05. When the error data were collapsed over representation methods, analysing the

difference between the axis configurations, the common Z−variable setup was found to produce more

errors (median value of 11.25%) than the different Z−variables setup (median value of 4%) but the

difference was not significant. There was no significant effect of order.

Insert figure 10 about here.

Insert table 2 about here.

Next the difference in errors between the different axis configurations for each representation method, was

examined. There was no significant difference between the error rates for the different configurations in

either the 2D condition or in the 3D condition. Finally the differences between the two axis configurations



for each type of representation (2D and 3D) were examined. For the case with a common Z−variable the

3D representation produced more errors (median value of 42.50%) than the 2D representation (median

value of 0%) and the difference was significant (z = -3.063, p <0.05). In the different Z−variable

condition, again 3D produced more errors (median value of 43.75%) than 2D (median value of 0%) and

the difference was significant (z = -3.063, p <0.05).

To summarize, these results show that the 2D representations significantly outperform the 3D represen-

tations, both in terms of response times and accuracy. The response time was about 7 times longer for

3D and the error rate was about 40% higher, regardless of whether the third dimension in 3D parallel

coordinates is represented by a common Z−variable or different Z−variables. It should also be pointed

out that no speed-accuracy trade-off was present.

Finally, we analysed the subjective measures, that is the post session questionnaire assessing each par-

ticipant’s confidence in their responses for each representation method: 2D and 3D. The ratings are

illustrated in figure 11. These four graphs illustrate, for the four separate conditions, the participants’

subjective ratings using a Likert scale with the following response alternatives: 1 (not confident at all), 2

(somewhat confident), 3 (neutral), 4 (confident) and 5 (very confident). As evident from the graphs the

participants expressed an overall greater confidence in using the 2D representation, the median ratings

were 5 (very confident) for both conditions (common Z−variable and different Z−variables). For the

3D representation the median ratings were 2 (somewhat confident), for both conditions. These results

again support the use of 2D parallel coordinates over 3D parallel coordinates for these types of tasks

and patterns.

Insert figure 11 about here.

4 Discussion and Conclusions

In this article we present a first effort to evaluate 3D parallel coordinates, as originally proposed by We-

genkittl et al.,4 in order to investigate whether or not there is a benefit with adding a third dimension



for analysing 2D patterns. 3D parallel coordinates, based on parallel planes instead of parallel axes, has

for many years been used within the information visualization community in a variety of applications.

Despite its quite common use, no formal evaluation demonstrating its usefulness for different tasks has

previously been presented. Adding a third dimension to a standard 2D parallel coordinates represen-

tation is challenging because it may result in ambiguity, distortion and cluttering of the information

available in the representation. These issues regarding human spatial vision and scene interpretation are

well documented in perception research and have also been considered in the information visualization

literature. It should be emphasized that there exist information visualization techniques that encode

data onto a third dimension in a way that is appropriate, based on theory in perception and cognition,

and that present actionable evidence from user studies justifying their suitability for use in its intended

area. However, it is common that we see approaches being presented where the developer only asserts

that to add a third dimension is an excellent idea without presenting any convincing scientific arguments

or evidence that this is the case. This lack of evaluation is a major problem since it leads to approaches

being expanded upon and/or being taken into real use without any knowledge about their potential and

limitations.

The objective of our study was to investigate human ability to identify 2D relationships between variables

in 3D parallel coordinates. We investigated performance in terms of accuracy and efficiency when using

3D parallel coordinates constructed by having a common Z−variable and different Z−variables. We also

investigated performance when using standard 2D parallel coordinates. The findings of the experiment

are clearly in favour of the 2D representation. Using any of the two 3D representations resulted in longer

response times to accomplish the tasks as well as more erroneous responses. The difference is substantial

for both measures and there exists no speed/accuracy trade-off, meaning that it is not due to longer

response times that 2D outperforms 3D in accuracy. When it comes to the participants’ subjective

opinions there was also a clear preference for 2D over 3D, overall the participants stated that they did

not feel confident in their judgements of the patterns in 3D.

When comparing the two different 3D parallel coordinates with each other no significant effects were

found between them. The 3D axis configuration with a common Z−variable generates less distorted

patterns than the one with different Z−variables. The use of a common Z−variable avoids polylines

crossing each other in the third dimension. The crossing effect is only present in the configuration with



different Z−variables. This fact could make one assume that performance should be somewhat better

for the common Z−variable condition. However, the results indicate that this viewing condition already

generates a distortion of the patterns that is sufficient to rule out reliable identification.

It is necessary to emphasize that some of the variations of 3D parallel coordinates representations

presented in previous work, in section 2, deal with using the 3D technique for domain specific tasks,

hence the different extensions are not developed as general analysis methods. It should be pointed out

that, based on our study using five synthetically generated 2D relationships and 24 participants, we

do not argue that the results can be generalized to all other data sets, tasks and users. However it

seems fair to argue that if it is not possible to identify 2D patterns in data with accuracy (even such a

simple pattern as an almost perfect negative correlation) it does not seem that it would be possible to

effectively and efficiently use 3D parallel coordinates for the domain specific analyses of data suggested

in the literature. One exception, however, might be time-oriented data. Displaying such data with

3D parallel coordinates using the common Z−variable configuration might reveal significant temporal

structures. The temporal dimension is difficult to visualize in 2D parallel coordinates since it must be

represented on one of the axes, in the same way as all other variables. Separating time from the other

variables by means of a third dimension might, therefore, be advantageous when it comes to constructing

a mental image of the structures in the data. This should be a subject for future studies since, so far,

no other evaluation exists that presents convincing arguments in favour of using 3D parallel coordinates,

compared with 2D parallel coordinates for any task or any data set.

5 Future Work

The five relationships that were used as stimulus patterns in this study have in previous work been

shown to be accurately and efficiently perceived in 2D and in one type of 3D layout (multi-relational

parallel coordinates23). In that work the patterns were also shown to be equally discriminable, that is

no patterns were more easy or difficult to perceive than others. In this study, however, performance was

poor when using 3D parallel coordinates and the results suggest that users can not determine the nature

of any of the five 2D relationships used in the study. These findings need to be further investigated and



validated. The absence of a significant difference between 3D parallel coordinates constructed with a

common Z−variable and with different Z−variables could be further evaluated. A first step would be

to evaluate the different axis configurations for an increasing number of planes (variables). The current

study focused on simple 2D relationships and an interesting area for future research is to study whether

3D parallel coordinates would have an advantage over 2D parallel coordinates for higher dimensional

relationships. Future research could also include other types of relationships and tasks performed on real

data sets and include subjective feedback from domain expert users which will provide valuable insights

into the usability and appeal of 3D parallel coordinates.

Interaction was restricted in this study and it remains for future work to investigate whether the ability

to more freely interact with the 3D representations will overcome their limitations. However, this will

most likely increase viewing time and thus worsen efficiency of use.

Throughout the study a particular data size, 300 data items, was used to create all relationships. Different

data sizes, in terms of items (polylines) were not taken into consideration and whether or not varying

data sizes have an effect on performance may also be examined in future work.
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Figure 1: Illustrations of 2D parallel coordinates and 3D parallel coordinates with two different axis configurations.
Left: 2D parallel coordinates. Middle: 3D parallel coordinates with different Z−variables, in this example 4 variables
are represented. Right: 3D parallel coordinates with common Z−variable, in this example 3 variables are represented.



Figure 2: An example of 3D parallel coordinates with four planes using the different Z−variable configuration,
displaying eight variables.



Figure 3: The five patterns used in the experiment. From left to right: a negative linear relationship, a negative linear
relationship with a discontinuity, three sinusoidal relationships with one, two and three periods, respectively.



Figure 4: The rightmost 2D pattern illustrated in figure 3 shown in 3D parallel coordinates with the common Z−variable
setup.
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Figure 5: Illustration of the rotation restrictions, forcing the participants to interpret the representation in 3D. Sectors
in cyan represent the available rotation angles.



Figure 6: Depending on the position of two adjacent axes, a pattern can be mirrored. Except for the orientation, the
two patterns are identical and convey the same relationships.



Figure 7: Illustration of the common Z−variable configuration. Top-left: 2D parallel coordinates with three variables.
Top-right: 3D parallel coordinates with a common Z−variable showing three variables. Bottom-left: screen shot from
the experiment, 2D condition. Bottom-right: screen shot from the experiment, 3D condition.



Figure 8: Illustration of the different Z−variables configuration. Top-left: 2D parallel coordinates with four variables.
Top-right: 3D parallel coordinates with different Z−variables showing four variables. Bottom-left: screen shot from
the experiment, 2D condition. Bottom-right: screen shot from the experiment, 3D condition.



Figure 9: The main findings from the experiment in terms of response times. There was a significant effect between
using 2D parallel coordinates and 3D parallel coordinates. On average, the participants took approximately 7 times
longer to complete their tasks using 3D parallel coordinates. There was no significant effect between the different axis
configurations (common Z−variable or different Z−variables).



Table 1: Summary of the response times.

Mean Standard
value deviation

2D (common Z+different Z) 3.39 1.26
3D (common Z+different Z) 24.96 13.22
Common Z (2D+3D) 11.61 10.60
Different Z (2D+3D) 16.74 17.12
2D/common Z 2.94 0.93
3D/common Z 20.29 8.36
2D/different Z 3.84 1.42
3D/different Z 29.63 15.76



Figure 10: The main findings from the experiment in terms of accuracy. Similar to the response times, there was
a significant effect between using 2D parallel coordinates and 3D parallel coordinates. The participants completed
their tasks using 2D parallel coordinates with a median error value of 0% compared to 3D parallel coordinates where
the median error was over 40%. There was no significant effect between the different axis configurations (common
Z−variable or different Z−variables).



Table 2: Summary of the error data.

Median Lower Upper
value quartile quartile

2D (common Z+different Z) 0 0 2.50
3D (common Z+different Z) 42.50 27.50 47.50
Common Z (2D+3D) 11.25 0 42.50
Different Z (2D+3D) 4.00 0 43.75
2D/common Z 0 0 2.50
3D/common Z 42.50 36.25 46.25
2D/different Z 0 0 2.50
3D/different Z 43.75 25.00 56.25



Figure 11: The four graphs illustrate, for the four separate conditions, the participants’ subjective ratings using a
Likert scale (y−axes show number of participants) with the following response alternatives: 1 (not confident at all),
2 (somewhat confident), 3 (neutral), 4 (confident) and 5 (very confident). From left to right: 2D with common
Z−variable, 3D with common Z−variable, 2D with different Z−variables and 3D with different Z−variables.


