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Figure 1: Rendering results using CEOB for three scenes. (a) Materials: Translucent, measured gold BRDF and glossy. Light sources: one
area (disk) and 3 small spherical. (b) Materials: measured silver BRDF and glossy materials with different roughness. Light sources: 10
small spherical. (c¢) Materials: the ring is measured gold BRDF with a perfect specular component to enable caustics. The rest of the scene is
diffuse. Light sources: 6 small spherical. Real-time renderings and comparisons to other methods can be found in the supplementary video.

Abstract

We present an algorithm for compression and real-time rendering
of surface light fields (SLF) encoding the visual appearance of ob-
jects in static scenes with high frequency variations. We apply a
non-local clustering in order to exploit spatial coherence in the SLF
data. To efficiently encode the data in each cluster, we introduce
a learning based approach, Clustered Exemplar Orthogonal Bases
(CEOB), which trains a compact dictionary of orthogonal basis
pairs, enabling efficient sparse projection of the SLF data. In ad-
dition, we discuss the application of the traditional Clustered Prin-
cipal Component Analysis (CPCA) on SLF data, and show that in
most cases, CEOB outperforms CPCA, K-SVD and spherical har-
monics in terms of memory footprint, rendering performance and
reconstruction quality. Our method enables efficient reconstruction
and real-time rendering of scenes with complex materials and light
sources, not possible to render in real-time using previous meth-
ods.

CR Categories: 1.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture
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1 Introduction

Real-time rendering of complex scenes with full global illumination
is one of the main goals of computer graphics. Although many real-
time approximations for realistic rendering have been proposed,
this is still an unsolved problem. This is especially true for ap-
plications like interactive product visualization, where predictive
results without any artifacts is an absolute requirement. A popular
approach is to use appearance capture methods, [Chen et al. 2002;
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Unger et al. 2008; Low et al. 2009], or to pre-compute detailed sur-
face light fields (SLF) describing the appearance of virtual objects
using full global illumination. A key problem, however, is that an
SLF data set exhibit a very large memory footprint (often in the or-
der of several GBs per object in the scene) and does not easily lend
itself to real-time rendering.

In this paper we present a learning based algorithm for efficient
compression of appearance information encoded as SLFs, which
enables real-time rendering of virtual scenes exhibiting complex
materials and light source configurations with full global illumi-
nation. Our algorithm is built upon the following requirements: the
complexity of off-line pre-computations should not exceed that of
standard methods for pre-computed radiance transfer (PRT) [Sloan
et al. 2003; Low et al. 2009], general high frequency scenes and
materials must be handled, the technique must handle arbitrary light
source configurations, and finally support real-time rendering.

Surface light fields - An SLF is a 4D function f(u, v, ¢, 8) that de-
scribes the visual appearance of an object as seen from any vantage
point. For each point (u,v) on the object surface, it describes the
distribution of outgoing, scattered radiance in any direction (¢, 6)
on the hemisphere around the surface normal, see Figure 2.

Throughout the paper, we will refer to the angular radiance dis-
tribution at a single point p; as a hemispherical radiance distri-
bution function (HRDF). An HRDF is defined within the tangent
space at the corresponding spatial sample point on the surface. We
will denote the discretized SLF function as a set of HRDF matrices
H;, (i = 1...n) of size m1 X ma, each sampled at a surface lo-
cation p;, where n is the number of spatial sample points. The size
of an HRDF matrix defines the angular resolution. The placement
of spatial sample points p; is arbitrary. In our implementation, we
either place them regularly on a grid in the parametric space (u, v),
or irregularly by placing an HRDF at each vertex of polygonal ob-
jects. Each HRDF is represented using concentric mapping [Shirley
and Chiu 1997], preserving area in the mapping from a unit square
to a unit hemisphere, and vice versa. We evaluate and store the out-
going radiance at each point p; and along mi X mg directions of
the HRDF. Our pre-computation stage is currently limited to static
scenes, but enables us to generate data of arbitrary complexity. The
HRDFs are stored in the YCbCr color space. This representation is
widely used in digital and analogue video transmission [Poynton
1996], where the chromaticity values are often sub-sampled by a



Figure 2: We represent the 4D SLF function f(u,v, ¢,0) as a dis-
crete set of hemispherical radiance distribution functions, HRDFs.

factor of two. By compressing each channel separately, we apply a
similar approach.

Algorithm overview - Our compression algorithm exploits corre-
lations in both the spatial and angular domains to adapt to the input
data in two stages, see Figure 3. First, we analyze the spatial cor-
relation in the data by clustering points with similar HRDFs, see
Section 2. In a second step, we then learn a per-cluster compact
dictionary exploiting the angular coherence. We explore two dif-
ferent methods for learning the dictionary, the well known Prin-
cipal Component Analysis (PCA) algorithm, see Section 3, and
an adapted version of the recently proposed Exemplar Orthonor-
mal Basis (EOB) method [Gurumoorthy et al. 2010], see Section 4.
Both Clustered-EOB (CEOB) and Clustered-PCA (CPCA) allow
for real-time reconstruction and rendering on commodity graph-
ics hardware. We show that CEOB in most cases outperforms
CPCA [Miandji et al. 2011], K-SVD [Bryt and Elad 2008] and
spherical harmonics [Sloan et al. 2003; Low et al. 2009] in terms
of memory footprint, reconstruction quality and rendering perfor-
mance.

2 Clustering

To group the input HRDFs, H;, into clusters with similar radiance
distributions, we use a non-local clustering based on the L1 norm
||H; — Hj||1 as distance metric. This metric measures the dis-
tance between the HRDFs based on their radiometric properties,
and does not consider the spatial distance between the points p;
where the HRDFs were sampled. In this way, we exploit global
coherencies in the data. The choice of L1 norm is due to its ro-
bustness against outliers. We denote the HRDFs in a cluster ¢ as
{H{}, ¢ =1..1, i = l...n., where 7 is the number of clusters and
n. is the number of HRDFs in cluster c.

For clustering the set { H; }, we use the K-Means algorithm, [Lloyd
1982], extended with a robust initialization method, K-Means++
[Arthur and Vassilvitskii 2007]. To initialize centroids for K-
Means, we first randomly pick an HRDF as the first centroid. We
then compute a discrete probability density function (PDF) propor-
tional to the distance of each HRDF to its closest centroids. We
sample the next centroid using this PDF. This process is iterated
until we have 7 centroids. The result of the clustering is a vector of
indices, x € R", relating each HRDF to its corresponding cluster.
This vector is used during reconstruction to find the corresponding
dictionary of each HRDF.

3 CPCA

After spatial clustering, the first step in the CPCA algorithm,
[Miandji et al. 2011; Sloan et al. 2003], is to rearrange the collection
of n. HRDFs in each cluster ¢ to form a matrix F'¢ € R™c*™m1™2
Then, F° is normalized by subtracting the mean, p, computed as
the average of rows in F'°. Afterwards, each cluster is projected
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Figure 3: Overview of the proposed algorithm.
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onto a low dimensional space spanned by the eigenvectors of the co-
variance matrix of F'°; in particular, F* = U C(VC)T, where U° €
R"** contains coefficients for each HRDF, V¢ € R™1™2%¥ rep.
resents basis functions as rows and k is the number of principal
components. Power iteration [Chen et al. 2002] can be used for
computing first k£ singular vectors without the need for perform-
ing a full Singular Value Decomposition (SVD). Note that our ap-
proach is different from the light field mapping technique [Chen
et al. 2002], where PCA is applied on a neighborhood ring of a ver-
tex. Instead we cluster the HRDFs defined over the whole object
and then apply PCA on each cluster. Our approach decouples geo-
metrical complexity from radiometric complexity. A robust power
iteration algorithm is presented in [Miandji et al. 2011], consider-
ing the case when the number of HRDFs in a cluster is smaller than
the angular resolution, i.e. n. < mima.

4 CEOB

The CEOB method is, after the spatial clustering in Section 2, com-
posed of two stages: training and testing. The training phase learns
a set of orthogonal basis pairs which are used during the testing
phase to compute a sparse coefficient matrix per HRDF with min-
imum reconstruction error. We start by considering an HRDF ma-
trix corresponding to a surface point p; in cluster ¢, denoted as
Hf € R™M>*™2 4§ = 1...n.. Applying SVD on H;, we have
H¢ = U.S;V.'. We can define another pair of orthogonal bases
(U, V..) which satisfies Hf = UCS_'Z-\_/CTl where S; is not diagonal
anymore but is arbitrarily sparse, i.e. ||.S;|lo = ¢, where ¢ defines
the number of non-zero coefficients (sparsity). Given U, and V., it
has been shown, [Gurumoorthy et al. 2010], that the optimal .S; can
be computed by nullifying the smallest m1m2 — ¢ elements of the
estimated projection matrix S; = UZ H{ V...

A single basis pair will not be adequate for approximation of n.
HRDFs of a cluster. As a result, we train a small number of basis
pairs. In summary, EOB is based on training a set of k. < n. full-
rank orthogonal basis pairs (exemplars), {Us, Vi), a = 1.. . ke,
such that projecting each HRDF onto one basis pair would lead to
the most sparse coefficient matrix while minimizing the L2-error.
This can be formulated as minimizing the following energy func-
tion:

ne ke
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where S;, € R™'*™2 contains coefficients of the ith HRDF
when projected onto the ath exemplar; M € R"*¥c is a binary
matrix associating each HRDF to its corresponding exemplar pair
(Ug, V). Since each HRDF is represented using one exemplar pair
(the last constraint), each row in matrix M has only one compo-
nent equal to one. The first two constraints are for orthogonality of
the exemplars and sparsity of the coefficients matrix respectively.
Equation (1) can be solved efficiently using an iterative approach



[Gurumoorthy et al. 2010]. First the matrices {US, V '}, Va, Ve
are initialized with random orthogonal matrices and the matrices
M€ are initialized with 1/k.. Then the following update rules are
applied sequentially:
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where we nullify m1m2 — ¢ elements of S;. with smallest abso-
lute value after each update to S;,. [ is a temperature parameter
initialized with a small value. The value of the sparsity param-
eter, ¢, is fixed for all HRDFs during training. More details on
the derivations of update rules can be found in [Gurumoorthy et al.
2010]. The updates are done sequentially until the changes to ma-
trices S, U,V , M are minimal. Then the temperature parameter
is increased and sequential updates are repeated. The algorithm
converges when M€ is binary or near binary, e.g. satisfying the
following criteria: | M — | M€|||2 < €, where € is a small value.

The training set for each cluster is chosen as a subset of the cluster
(typically 20 to 80 percent of the HRDFs in a cluster). Intuitively,
this subset should represent all data points of a cluster. A random or
pseudo-random selection may lead to missing of important details.
Therefore, incorporating the information inside HRDFs is essen-
tial. We use the K-Means++ initialization algorithm (described in
Section 2) inside each cluster. In this way, it is guaranteed that the
selected HRDFs have the maximal (radiometric) distance from each
other inside a cluster. Note that for very high frequency materials,
the intra-cluster coherence cannot be guaranteed unless we have a
very large number of clusters. Due to the fact that we have a dic-
tionary per cluster, we prefer to keep the number of clusters low
enough for storage efficiency. Hence, careful selection of training
set for each cluster is important.

Having the exemplar pairs for each cluster (the training phase), the
testing phase computes the most sparse coefficient matrix resulting
in the smallest reconstruction error for each HRDF. Depending on
the projection error, each HRDF can have a different sparsity value,
i.e. we have variable number of coefficients per HRDF. For this
purpose we proceed as follows: Each HRDF is projected onto all
exemplars of the corresponding cluster, leading to a set of coeffi-
cient matrices that are greedily nullified while the error is below
a user defined threshold. The exemplar pair that produces spars-
est coefficients with least error is picked and the index is stored in
the vector M € R™. The results of the testing phase is the sparse
coefficient matrices {.S; } and the exemplar membership matrix M.

5 Reconstruction and rendering

In this section, we describe how the appearance (outgoing radiance)
of a spatial location p; on an object, along a direction (¢, ) to-
wards the camera can be reconstructed from the compressed SLF
data during rendering. Here we use the notation (£1,&2) to address
an element of an HRDF matrix. Note that we do not need to re-
construct the HRDF as a matrix, but only a single element inside it
corresponding to the current view direction.

First, the cluster index at the surface point p; is fetched, ¢ = x;.
The reconstruction for the proposed compression algorithms is dif-
ferent for CPCA and CEOB, and can be described as follows:

Raw CEOB CPCA
Scene

Size Size | FPS | PSNR | Size | FPS | PSNR

Fig. 1a | 3180 380 34 65 343 33 | 61.85

Fig. 1b | 13600 | 1492 | 38 | 59.95 | 1420 | 34 58.5

Fig. Ic | 6300 226 26 67.55 | 212 23 23.83

Table 1: Statistics for test scenarios shown in Figure 1. The size
is in megabytes and the PSNR is calculated as the average of the
intensity channel’s PSNR of all objects in the scene

CPCA - To reconstruct an element of a PCA compressed HRDF,
HY, in cluster ¢, we perform a dot product between the coefficient
vector of the HRDF in U, with a basis vector in V' corresponding

to (&1, &2):
k
Hi(a) = p(a) + Z U, 5)V(a,j), 3)

where @ = &2 + &1'mo is used for addressing a lexicographically
ordered matrix. Note that using the power iteration algorithm the
singular values, S;, are pre-multiplied by V¢, hence omitted from
the equation above.

CEOB - For CEOB, we use the relation H; = UES;VE, where
a = M;. The sparsity of .S;, along with the fact that we need only a
single element of the HRDF matrix for each view direction allows
for a compact reconstruction formula for CEOB:

T;
H'ic(£17§2) = Z U;(S’L(t7 1)7 51) Sl(t73) Vac(si(t7 2)a§2)7 “4)
t=1

where we represent S; as a matrix of size ¢ x 3; the first two columns
describe the index of a non-zero element and the third stores its
value. Note that the reconstruction cost for a single element in the
compressed HRDF is directly proportional to the sparsity factor and
that we for each non-zero coefficient only have two scalar multipli-
cations followed by an addition.

6 Results and Evaluation

To measure reconstruction quality, we use a modified version of the
Peak Signal to Noise Ratio (PSNR):

-

! Lo e fre
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e J

where [ is the intensity of the brightest light in the scene and H ;
is the reconstructed HRDF after being compressed using CPCA or
CEOB. Figures 4a-4c illustrate a simple scene illuminated by three
small spherical light sources. The ground plain and the sphere share
the same glossy material with three roughness values (0.5, 0.05
and 0.005) in order to evaluate the efficiency of the proposed algo-
rithms. The SLF for the glossy sphere consists of 32x 32 spatial and
32 x 16 angular samples. Figures 4d-4f compare CEOB, CPCA,
K-SVD [Bryt and Elad 2008] and spherical harmonics [Sloan et al.
2003] in terms of the number of coefficients and PSNR (an analysis
of CEOB parameters and the effect of clustering is included in the
supplementary material).

For CEOB we used 16 exemplar pairs, i.e. & = 16 in Equation
1; for K-SVD we trained a dictionary of 64 atoms. Note that in
our test scenario, the dictionary for K-SVD is twice as large as
the one for CEOB. In addition, the dictionary for CPCA grows
proportionally to the number of coefficients (see Section 3). We
observe that CEOB outperforms other methods for high frequency
data while CPCA and K-SVD can achieve a slightly better recon-
struction quality for a near-diffuse material. Even in the latter
case, CEOB achieves a higher rendering performance and a smaller
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Figure 4: The scene used in the evaluation of the CPCA, CEOB, K-SVD and Spherical Harmonics (SH) compression schemes. The roughness
parameter of the material on the sphere and ground plane is systematically varied to introduce a variation in the frequency content of HRDF's.

memory footprint. Spherical harmonics has the least PSNR due to
its inefficiency for handling high frequency signals.

Figure 1 presents rendering results using CEOB for three scenes
including complex materials and light sources. Visual quality com-
parison between CEOB, CPCA and a reference rendering is in-
cluded in supplementary materials. The spatial resolution for ob-
jects vary from 128 x 128 to 512 x 512 and the angular resolution
is 32 x 16. The number of clusters is 32 for all objects except for
the ring in Figure 1c where we used only one cluster. The material
of the ring includes a perfect specular reflection component to cast
caustics on the near-diffuse ground plain. Figure 1 presents statis-
tics for these three scenarios compressed using CEOB and CPCA.
For all these cases, the number of exemplars is set to 16 or 32 and
we used maximum of 32 coefficients for intensity channel and 16
coefficients for chromaticity channels. Parameters for CPCA are
then set to match the storage cost of CEOB. Performance was mea-
sured using a PC with a NVIDIA GeForce GTX 560.

7 Conclusion

We presented a SLF based method for real-time photo-realistic ren-
dering of static scenes with arbitrary materials illuminated under
general lighting conditions. We proposed a learning based com-
pression technique, CEOB, and discussed the application of CPCA
on SLF data. Our results show an overall advantage of CEOB in
terms of memory footprint, rendering performance and reconstruc-
tion error. In addition, we analysed different parameters for our
compression techniques. In the future, we would like to explore the
possibility of including temporal domain in our data. Hence, learn-
ing a compact dictionary that exploits coherence on spatial, angular
and temporal domains.
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