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ABSTRACT

In this paper we consider the problem of nonlocal image
completion from random measurements and using an ensem-
ble of dictionaries. Utilizing recent advances in the field of
compressed sensing, we derive conditions under which one
can uniquely recover an incomplete image with overwhelm-
ing probability. The theoretical results are complemented by
numerical simulations using various ensembles of analytical
and training-based dictionaries.

Index Terms— compressed sensing, image completion,
nonlocal, inverse problems, uniqueness conditions

1. INTRODUCTION

Nonlocal image representations have attracted a lot of at-
tention in the image processing community for solving in-
verse problems such as inpainting, denoising, and deblurring.
The success of state-of-the-art methods such as BM3D [1],
LSSC [2], PLE [3], SAIST [4], and their variants, can mainly
be attributed to the utilization of such a model. Nonlocal
image representations exploit the intrinsic self-similarity of
natural images to cluster image patches into groups, each
with an associated dictionary. In this manner, images can
be represented by an ensemble of dictionaries and inverse
problems are solved locally in the transformation domain.
These models are closely related to structured sparsity in the
Compressed Sensing (CS) literature [5, 6, 7]. In Figure 1 we
compare the nonlocal image completion method presented
in [8] with similar methods using one dictionary. These re-
sults, also supported by [1, 2, 3, 4], show the advantage of
nonlocal approaches. However, it is not clear whether one can
exactly recover an incomplete image using nonlocal models.
In this paper, we derive uniqueness conditions for the
problem of nonlocal image completion. In other words, we
answer the question that whether an incomplete image can be
exactly recovered using a nonlocal sparse model. We assume
that the incomplete input image is a random sub-sampling of a
natural image. The presented analysis provides upper bounds
for sparsity and probability of exact recovery by consider-
ing the structure of a dictionary ensemble and the number
of measurements. We believe that the theoretical results of
this paper provide insight into training or selecting suitable
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Fig. 1. (b) reference, (c) the incomplete patch with 75% of
pixels removed randomly. (d)-(g) show the reconstruction
of (c) obtained by: (d) linear interpolation, (e) a two-times
overcomplete DCT dictionary, (f) a two-times overcomplete
K-SVD dictionary [11], (g) an ensemble of dictionaries as
presented in [8]. Numbers represent PSNR.

@a natural image

dictionaries, as well as required number of measurements for
the problem of nonlocal image completion.

Notations - The nth column and row of a matrix, X, are de-
noted X_,, and X, , respectively. Given an index set, I, the
sub-matrix X 7 is formed from columns of X indexed by I.

2. PROBLEM DEFINITION

Compressed sensing (CS) [9] is a relatively new field in signal
processing. In essence, CS states that if a signal is sufficiently
sparse in a dictionary, it can be reconstructed exactly from
only a few measurements, much less that what is required by
the Nyquist criterion (see [10] for a tutorial on this topic).
Consider a signal vector, p € R™, and define a linear sampling
operator, & € R™*", m < n, operating on p, i.e. p = Pp.
The matrix @ is called a measurement or sensing matrix. We
now define a sparse signal:
Definition 1. A signal, p € R", is called T-sparse under a
dictionary D if p = Dx and ||x||o = 7 < n. The support of
x, denoted supp(x), is the index set of non-zero elements.
Assuming sparsity of p, the measurement model using the
above definition becomes p = ®Dx. Recovering the coeffi-
cients, x, involves solving the following problem:

X =minlx|p st. p=PDx. (D

According to (1), uniqueness of the solution implies that it
is also the most sparse one, i.e. the global minimizer. Vari-
ous conditions have been proposed for the sensing matrix and
the dictionary to achieve uniqueness for (1). We will discuss
these conditions in Section 3.

The problem of image completion requires a special
sensing matrix, which we define here. Given an index set
{1,...,n}, associate with each index a vector e; € R",



where (e;); = 0, Vi # j, and (e;); = 1,if i = j (ie.
a canonical basis vector). Let {ki,...,k,} be a uniform
random permutation of the index set {1,...,n}.

Definition 2. The sensing matrix 15, € R™" A =
{k1,...,km}, called a spike ensemble, is constructed by
stacking {ei}f;"kl as rows of a matrix.

The permutation is called uniform since all n! permuta-
tions happen with equal probability. The operator I, can be
interpreted as a uniform sampling without replacement too.
A clear advantage of the spike ensemble is simplicity of hard-
ware implementation. For instance, a light field camera using
a binary mask was proposed in [12].

Using the spike ensemble, the problem of nonlocal image
completion can be formulated as:

% =min|x||p s.t. P =1Ix Dgx, )
X

where U = {Dy}#* | is an ensemble of dictionaries and the
signal is sparse at least in one of the dictionaries. Since no
information on the underlying signal is available, one has to
solve (2) for all the dictionaries in the ensemble and choose
the “best” result, e.g. the most sparse one. However, when the
signal is equally sparse in two or more dictionaries, unique-
ness of the solution cannot be guaranteed. Our analysis re-
solves this issue for an spike ensemble, see section 3.

3. UNIQUENESS

In this section, we first introduce the challenges associated
with the uniqueness of (2) and then present our main result.
As it can be seen in (2), we consider noiseless images and
leave further analysis in presence of noise to future work.
The problem of uniqueness for an ensemble of dictio-
naries is indeed two-fold. First, equation (2) should have a
unique solution for every dictionary in the ensemble, which
leads to K solutions. Second, additional conditions have to be
met for selecting one solution among K solutions. Unique-
ness for one dictionary has been extensively studied. For in-
stance, the solution of (2) is unique for a dictionary Dy, if [13]:

. 1
I8l = 7 < 5spark(@Dy), @)

where spark is defined as a smallest number of linearly de-
pendent columns of a matrix. Although the obtained result is
by definition sharp [13], computing spark is a combinatorial
process and often intractable. A popular alternative is mutual
coherence [14], defined for an arbitrary matrix X € Ro%? ag:

|XT1XJ|

X)= max —r—"— 4)
PN = BT ILI

Using mutual coherence, if
o =7 <+ (14— 5)
HOTTE T @by )

then X is the unique solution of (2) for a fixed dictionary Dy,
see [15]. Although mutual coherence does not provide sharp
bounds, it is computationally efficient. Note that in practice,
one solves the convex relaxation of (2) using the ¢; norm.

In this case, if (5) holds for the solution obtained from the
convex relaxation, then it is the true solution of (2).

Let us assume that (3) or (5) is satisfied for all D, € W.
Solving (2) for all the dictionaries leads to coefficient vec-
tors {%, }/X_,. However, the uniqueness cannot be guaranteed
when an image patch is equally sparse in two or more dictio-
naries. To setup the notation, assume that the patch p can be
equally sparse in two dictionaries, say A € W and B € U;
i.e. there exist two vectors x; and x5 such that p = Ax; and
p= BXQ, where HX1||0 = HX2||O =T.

Our analysis is based on the Blind Compressed Sensing
(BCS) framework [16], which defines the conditions for ob-
taining a unique solution given a finite set of orthonormal dic-
tionaries. Instead of analyzing the uniqueness of coefficients
obtained from (2), BCS considers the uniqueness of the signal
p. To elaborate on this, assume that p; = Ax; is a solution
of (2), where ||x1]lo < 7 and p = ®p;. The BCS uniqueness
implies that there is no ps = Bxa, such that ||x2[o < 7 and
p = ®p,. To ensure this, the authors define a condition on
the sensing matrix ® for uniqueness. Formally,

Definition 3. A sensing matrix ® is T-rank preserving of the
dictionary ensemble ¥ if

rank(fl)[A_J, B,J]) = rank([A.J, B_J]), (6)
forany A € U and B € VU, and any index set I and J, defining
the support, with cardinality T.

The index sets I and .J define the support of the signal

in A and B, respectively; i.e. we have I = supp(xy) and
J = supp(x2), where p = Ax; and p = Bxa. The following
theorem establishes the conditions for global uniqueness of
(2) using Definition 3.
Theorem 1 (Blind CS [16]). Assume that (3) or (5) is sat-
isfied for all dictionaries in V. If ® is T-rank preserving of
any two dictionary in VU, then solving (2) for all the dictio-
naries in V and choosing the sparsest solution, denoted x.,
gives a unique signal p, = D.x., where D, is the dictionary
corresponding to the X,.

The proof can be found in [16]. We observe that the key
aspect of uniqueness is (6). Gleichman and Eldar [16] show
that an i.i.d. Gaussian sensing matrix is 7-rank preserving
for any finite set of orthonormal dictionaries with probability
1 when m > 27. The proof of this result follows trivially
by observing that spark(®) = m + 1, see [16]. Unfortu-
nately, the spike ensemble I, . does not satisfy this property.
Although I, is full-rank, the spark is not maximal.

In this paper, we show that the spike ensemble is 7-rank
preserving of a dictionary ensemble with high probability if
the signal is sufficiently sparse. Unlike [16], our analysis does
not assume orthonormal dictionary ensembles; we also con-
sider overcomplete dictionaries. Although overcomplete dic-
tionary ensembles have not been utilized in practice, our nu-
merical results show superiority of such ensembles.

When dictionaries in ¥ are orthonormal, we observe
that even though A ; and B, ; have orthonormal columns,
[A. 1,B. s] is not necessarily orthonormal. Form the Gram



matrix of [A 1,B. ]

)

W=[A ;,B J]"[A 1,B.J] @)
_ AT/A =1 ATB, ®
(AT,B_,)T BL,B,=1)

implying that W = 1 only when ATB; = 0. Since (6)
is a condition on rank, it is more convenient to transform
[A ;,B. ;] into a matrix G € R™*" with orthonormal
columns, such that rank([A_;,B. j]) = rank(G) = r and
GTG = I, where I is the identity matrix. One can apply a
Gram-Schmidt process on the columns of [A_;,B_;| to get

G. Therefore, without loss of generality, our goal is to verify:
rank(Ix, G) = rank(G) = r, )
instead of (6). Note that r does not need to be known, but we
include it to clarify the dimensionality of G. Moreover, when
the dictionaries in ¥ are overcomplete, (3) implies that every
7 column in Dy forms a linear subspace of dimensionality
7 [17]. Therefore the same procedure can be used to form G,
and we can verify (9) instead of (6). The following theorem
establishes the conditions for a spike ensemble to be 7-rank
preserving.
Theorem 2. Under the setting described above, if:

1
m > {—nalog()-‘ , (10)
r
where
a= max |Gy |3, (11)
j=1,....,n

then with probability at least:

1—7(0.3679) 7 (12)
the spike ensemble 15 is T-rank preserving of the dictionary
ensemble V.
Proof. Since G is full rank, it suffices to show that I G is
also full rank. The proof follows from the Matrix Chernoff
inequality [18], therefore we verify the conditions of this the-
orem. Expand the matrix I . by placing zero vectors at rows
{1,...,n} \ A, and denote the resulting matrix I . It can be
seen that Iy G = (iAVG)A,_. Expanding the Gram matrix of
iA,‘G, denoted Y, we have:

n
Y=(1,.G)"(1,.G)=> G'[L G=) GG, .
i=1 jeA

The matrices X;, j € A, are symmetric and positive semidef-
inite. Recall that A is m first indices obtained from a uniform
random permutation of the index set {1,...,n}. We can as-
sume that the matrices X;, j € A, are randomly sampled,
without replacement, from a finite set of positive semidefinite
matrices:

X={X;=G]Gj. |j=1,...,n} (14)
Therefore, Y is a sum of random positive semidefinite matri-
ces. We have that

rjnea/i( AmaX(Xj) = I}lea/i( ||Gj7-H§ <o (15)

In addition,
E{X;} = lzn:GTG‘ _lara =Ly (16)
l_nj=1 ) n’

and therefore
1
)\max(E{Xl}) = )\min(E{Xl}) = ﬁ (17)

Using (16) and (17), we define the following quantity used in
the matrix Chernoff theorem:

Wmin = )\min Z E{X]} S m)\min (E{Xl}) = E
- n
JEA
(18)
We can now invoke Corollary 5.2 in [18], which states that
given (15) and (18), for a finite sequence of independent ran-
dom positive semidefinite matrices X; € R™*", j € A, and
for any 0 < 6 < 1 we have:

“min

=9
P ¢ Amin ij < (1 - 6)Wmin <r |:(15)15] )
JEA
(19)
Substituting (18) into (19) and inverting the probability event
we get:

m

_6 no
P Ain [ DX 2%(1—5) zl—r[e} .

_5)1-¢
ien (1-9)
(20)
Since we only need to show that:
Amin | D_X; ] >0, Q1)

JEA

we set d such that 1 — ¢ is close to zero. Therefore, the right-
hand side of (20) becomes, approximately, 1 — 7 (0.3679) e
This completes the proof. |

A similar analysis was presented in [19], however, for
bounding the condition number of a matrix with orthonormal
columns. In contrast, our goal is to verify (9) for blind-CS
and the uniqueness of (2). In addition, observe that Theorem
2 only states a necessary condition for exact recovery and one
has to also verify (3) or (5), or a similar condition for unique-
ness of (2) using one dictionary, e.g. RIP [20].

4. NUMERICAL RESULTS

To evaluate Theorem 2, we report numerical results for three
case studies associated with different dictionary ensembles.
We consider two signal lengths, n = 12 x 12 x 3 and n = 9 X
9 x 5 x 5 x 3, which are commonly used patch sizes for color
images [1, 8, 21], and 4D lightfields [8, 22], respectively. The
sparsity for image and lightfield patches are assumed to be
7 = 5 and 7 = 10, respectively; these values are typically
used by dictionary training algorithms [11, 8, 22].

The probability of success for exact recovery, using The-
orem 2, is shown in Figures 2-4. To compute this quantity,
we perform 10 trials, where in each trial a spike ensemble
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Fig. 2: Evaluation of Theorem 2 using an ensemble with
a DCT dictionary and orthonormal dictionaries constructed
from random data. (a)-(b) image completion and (c)-(d) 4D
lightfield completion
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is constructed as described in Definition 2. Moreover, each
trial constructs a uniformly random support in each dictio-
nary, denoted [ and J for two dictionaries in Definition 3;
i.e. we assume that the signal is equally sparse in each dictio-
nary, however, with different support (a weaker assumption
than group-sparsity [2]). Since Theorem 2 is only a necessary
condition, we set the probability of success to zero for trials
that do not satisfy the mutual coherence condition in (5).

For the first case study, we construct an ensemble with:

1. A DCT dictionary and 2. A basis for column space of
randomly generated image patches stacked as columns of a
matrix. Random image patches are constructed by sampling
uniformly from the interval [0, 255]. As described in section
3, we first create two sub-dictionaries using the random sup-
port sets, I and J. Then a QR decomposition is applied to the
concatenated dictionaries, obtaining the orthonormal matrix
G. Results are summarized in Figure 2, where we plot (12)
against the number of measurements and sparsity for both sig-
nal lengths. Each plot reports the best, median, and worst val-
ues for the probability of success among all trials. It can be
seen that a 10-sparse lightfield can be exactly recovered with
as low as 5% of measurements with probability at least 0.98.
For a 5-sparse image, median of the results suggest that with
35% of measurements one can achieve exact reconstruction
with the same probability.

Gurumoorthy et al. [21] present a method for learn-
ing an ensemble of 2D orthonormal dictionaries (E2DOD)
with applications in image compression. The ensemble,
U = {Uy, Vk}le, is trained such that an image patch can
be represented as P; = UkSikV{, where S; is a sparse
coefficient matrix. A CS-based method was proposed in [8]
for image completion using E2DOD. The authors form the
ensemble ¥ = {V; ® U, }X | to solve an ¢; recovery prob-
lem, where ® denotes the Kronecker product. In this paper
we analyze the exact recovery conditions for E2DOD, shown
in Figure 3. We train an ensemble of 16 dictionaries with
sparsity T 5 on a set of natural images. In each trial,
two dictionaries are randomly selected for evaluating Theo-
rem 2. The same procedure is used, as described earlier, for
calculating the probability of success.

The third ensemble consists of five K-SVD dictionaries
trained on different sets of natural images. The sparsity was
set to 5 and, similar to E2DOD, we randomly select two dic-
tionaries in each trial. Results are summarized in Figure 4.
Although E2DOD typically performs better than one K-SVD
dictionary [8], our results show that a K-SVD ensemble can
outperform E2DOD. This suggests new research directions
for dictionary training as overcomplete dictionary ensembles
have not been utilized in practice. The inferior performance of
E2DOD can be associated to the coherence among dictionar-
ies, which can be resolved by improving the clustering stage
of the training.

5. CONCLUSIONS

We presented the uniqueness conditions for recovering in-
complete images using an ensemble of dictionaries. We be-
lieve that our theoretical results can be used for designing ef-
ficient dictionaries, as well as evaluating existing methods for
image completion. We would like to extend our work by in-
cluding the effect of noise. In the presence of noise, image
patches are not exactly sparse, but rather compressible. In
this case, exact recovery may not be feasible; however, one
can derive an upper bound for the reconstruction error.
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