
TNM086 – VR-technology
1. Scene Graphs

December 1, 2023

1 Introduction

In this exercise you will try out both basic and more advanced scene graph concepts. After completing the
exercise you will

1. understand the basic parts of a scene graph API,

2. be able to use a scene graph API to place objects in the world and control these, and

3. understand how more advanced scene graph features can assist in building dynamic behaviour.

The API installed for this exercise is the OpenSceneGraph API (OSG). Other APIs may be used instead, how-
ever the support from supervisors can then of course not be guaranteed. Each task should then be replaced by
an equivalent task with the API of choice.

OSG is a very feature rich scene graph system. Because of this, you will only have time to take a look at and
use a basic subset of the capabilities of the software.

1.1 Linux via ThinLinc

The software necessary for this exercise (OSG) are installed on a Linux system available via ThinLinc (thin-
linc.edu.liu.se). The graphics support and performance over remote execution are limited, but sufficient for this
exercise.

To build your software using CMake use an approach similar to the following:

cmake -B build_lnx
make -C build_lnx

The cmake command will create a build folder and put the build configuration files there and the make com-
mand will build the software there.

1.2 Documentation

• OpenSceneGraph Quick Start Guide (free in PDF format — in the models folder)
https://www.itn.liu.se/~karlu20/courses/TNM086-2023/labs/openscenegraph_
quick_start_guide.pdf

• OpenSceneGraph Reference Manual
https://www.itn.liu.se/~karlu20/tmp/OpenSceneGraph/

1.3 Preparatory Reading

• OpenSceneGraph Quick Start Guide, sections 2.0–2.5, 3.2

• OpenSceneGraph Getting Started
http://www.openscenegraph.org/index.php/documentation/getting-started

1

https://www.itn.liu.se/~karlu20/courses/TNM086-2023/labs/openscenegraph_quick_start_guide.pdf
https://www.itn.liu.se/~karlu20/courses/TNM086-2023/labs/openscenegraph_quick_start_guide.pdf
https://www.itn.liu.se/~karlu20/tmp/OpenSceneGraph/
http://www.openscenegraph.org/index.php/documentation/getting-started


TNM086 – VR-technology 1. Scene Graphs

1.4 Tips

• To get more information about what OSG is doing, execute in your bash
export OSG_NOTIFY_LEVEL=DEBUG
before executing your program or start the program with variable set,
OSG_NOTIFY_LEVEL=DEBUG ./build_lnx/lab

2 Getting Started

Start with the provided stub, make sure you understand what is happening and add the code required for the
tasks below. Most of the information for this part is available in the quick start guide for OSG.

Task 1 — Create the ground:
The osg::HeightField is a shape node that provides a means for manual specification of a ground patch.
Use this node to create a ground. Also load an image and apply this as texture for the ground. You may specify
the height of the ground as some kind of function, for example sin and cos.

The minimum set of functions you’ll need to use to perform this task are allocate to allocate the nodes for
the grid, setXInterval and setYInterval to set the grid intervals, and setHeight to set the height
of each node in the grid. You may also want to use the function setOrigin.

Task 2 — Load objects:
Load at least two other objects (using osgDB::readNodeFile found in osgDB/ReadFile) and position
them in the world.

Various models have been made available in OSG format.

3 Advanced Features

Now that you have familiarized with both the OSG structure and the documentation it is time to use some more
advanced features of the system. In this part of the exercise you will need to make use of features that are more
sparsely found in scene graph APIs and systems. This is still just a small selection of the various effects and
tools available in OSG.

Task 3 — Use LoD:
Use the osg::LOD node to make the system show a model of different level-of-detail at different distances.
Use at least three different levels and use the osgUtil::Simplifier to create low level models from the
high level version of the model.

Since the simplifier tool makes polygon reduction on a selected model, make sure that you first copy the model.
That can be done using the clone function, but make sure that you do a deep copy. Also, observe that version
1, 2 and 3 of OSG have slightly different interfaces towards the simplifier tool. Depending on version you can
use traverse, apply or accept, respectively.

You may, to make the examination quicker, adjust the range for the different levels-of-details so that it is easy
to see the LoD change. In a real application the change is of course not supposed to be perceptible.

Task 4 — Moving object:
Use the osg::AnimationPath class together with the osg::AnimationPathCallback class to up-
date the transform of an object, thereby making it move through your world.

The animation path functionality is not described in the quick start guide, but the use is straightforward. An an-
imation callback object (osg::AnimationPathCallback) is created and added as callback function for
a transform node using the setUpdateCallback function available in the super class osg::Node. When
this callback object is created it should be set to use a configured animation path object (osg::AnimationPath).
Look up the respective class in the reference manual for details.

2



TNM086 – VR-technology 1. Scene Graphs

The animation path callback described above is a convenient pre-implemented callback to update a transform
based on an animation path. However, it is straightforward to implement your own callback that updates nodes
in any other way, by providing your own sub class of the osg::NodeCallback class, implementing the
function call operator (operator()).

OpenSceneGraph and other scene graph APIs include means to trigger events and interact with objects. This
can be used to encode a more dynamic world. In the following task you will use intersection visitor (employing
the Visitor design pattern) and an intersector. An example of how these are used can be found in osgintersec-
tion.cpp1. You will also have to identify which of multiple objects that are currently being intersected. This can
be done using the nodePath, which is an attribute of each intersection detected by the Intersector.

Task 5 — Trip Wire:
Enable the line drawing code in the stub and implement a trip wire that changes things in the scene, such as
the color or shape of objects, when moving objects cross the line. Let at least two objects be affected by the
trip wire. Use a node callback to have the intersection checked for every frame in the execution, and attach the
callback object to the root of the scene graph or to the objects that you want to update upon intersection. Adjust
the line end points if needed.

The following task is optional, but can be quite nice to try out. It is possible to add a particle source to a moving
object.

Task 6 — Particle systems: (optional)
OSG has a package for generating particle systems, osgParticle. Use selected effects with the particle
system, for example to make some objects explode or smoke.

4 Final Remarks

Your programming tasks are now all over and all you have to do is take a look at what you’ve done. You should
now have an understanding of both the OSG API and its capabilities, and the functionality of a scene graph
system in general. Now, just one last task to demonstrate your new skills.

Task 7 — Understand the scene graph:
Draw the resulting scene graph of your application either on paper or in some drawing program on a computer.
Make sure that you include all level-of-detail models and textures.

1http://www.itn.liu.se/~karlu20/tmp/OpenSceneGraph/osgintersection.cpp

3

http://www.itn.liu.se/~karlu20/tmp/OpenSceneGraph/osgintersection.cpp

	Introduction
	Linux via ThinLinc
	Documentation
	Preparatory Reading
	Tips

	Getting Started
	Advanced Features
	Final Remarks

