VR Technology TNM086

Interaction and Navigation

- Methods for navigation
- Methods for selection
- Manipulation
- Widgets

Fundamental Forms of Interaction

- Interaction
 - Navigation
 - Selection
 - Manipulation
 - Menus and widgets

Forms of Navigation

- Physical, limited, implicit navigation
- Physical, open, implicit navigation
- Artificial, explicit navigation

instantaneous or continuous

Forms of Navigation

- What is navigation? What is a "camera"?
 - Typical GL transform x' = P V M x
 - P = projection (frustum)
 - V = view (camera?)
 - M = model transform (everything else)
 - Actually: $x' = P V M_N \cdots M_2 M_1 x$

Forms of Navigation

- Head-tracked view navigation
 - + Creative extensions of view navigation
- Instantaneous scene transformation
- Continuous scene transformation

Implicit Navigation

Immersive display

- Should give us 'real world' interaction
- Walk to the object, turn around, etc
- Easily by moving "Viewpoint" or "Camera"
- Dependent on display and tracking technology
 - CAVEs and HMDs vs workbench and workstation
 - Available space

Boundary

- "Chaperone"
- Keep user inside of safe space
- Without destroying *immersion*

Smart Use of Space

Redirected Walking

- Rotate the scene to bend long straight walks
- 22 m radius circular walk can feel straight
- But rotation is *really* bad for cyber sickness

Portals and Corridors

- Dynamic scene that adapts to the real room
- Maze-like space ship or dense thickets

Scale and Navigate

- Scaling and moving
 - to help reaching larger areas
 - e g walking through our solar system
- There is no "zoom" in VR
 - scaling the world around user
 - (zoom is a change of FoV)

GulliVR ... , Krekhov et al, 2018

Frames of Reference

- VR display system
 - display system origin
 - head pose / HMD / eye pose(s)
- Navigational system
 - scene origin
 - moves objects relative the display
 - moves the display relative objects

Navigation Transform

- Navigation moves the scene
 - Create a graphics origin offset
 - move objects relative the display apply transform
 - move the display relative objects apply inverse

root

 T_{NAV}

Scene

UI

Main Issue with Explicit Navigation

- Vection
 - Sense of movement when body is stationary
- Gybersickness!
 - Sensory conflicts perception discrepancy
 - peripheral vision
 - vestibular system and proprioception
 - Important: sense of control
 - Trick: static peripheral vision

- Navigate by stationary motion
 - Treadmill,
 - simulate ground toroidal topology

Characteristics

- need to be fast, light and exact!
- balance issues
 - due to vection motion / momentum discepancy
 - due to mechanics momentum
 - due to system inaccuracy
- unrealistic
 - simulation of hard flat surfaces
 - no stairs, mud/snow/gravel, texture, unevenness

Motorized Platforms

Explicit Navigation

- Explicitly control the navigation
 - Applying some metaphor
 - Select where to go/fly/walk
- Typical metaphors
 - Walking/flying
 - Goal driven navigation
 - Object driven navigation

Fly/Walk Direction Control

- Gaze direction
 - Natural feeling
 - Can't watch scene go by
 - Common in FPS
- Pointing mode
 - Point at desired direction $\vec{p}' = \vec{p} + t_{\Delta} v \hat{u} = \vec{p} + t_{\Delta} v R \hat{z}$
 - 5 DoF device tracking required
- Crosshair mode
 - Eye/hand line defines direction $\vec{p}' = \vec{p} + t_{\Delta} v \frac{x_{hand} - x_{head}}{\|x_{hand} - x_{head}\|}$

21

Speed Control

Explicitly controlled speed

- Physical controls (joystick)
- Gestures
 - arm swinging, feet stamping walk-in-place
- Hand movements
- Access to a range of speeds
 - What range
 - defined by natural walk/running speed
 - defined by size of the world
 - defined by the distance to closest object

Hand Controlled Speed

Distance

- Control velocity with head-to-hand distance
- Use initial head-to-hand distance as zero velocity
- Used with crosshair control
 - Intuitive
 - Natural mapping
 - Limited range

Controlled Acceleration

- Acceleration allows for larger speed range
 - Push forward to accelerate
 - Backwards to decelerate
 - Harder to control
- When we release navigation button...
 - Immediate stop?
 - Soft deceleration?
 - Continue flying?

Problems w/ Hand-related Control

Fatigue

- Large and high hand movements
- Long periods of use
- Non-temporary use requires other methods
- Must be easy to turn on/off
 - Ordinary interaction causes motion
 - Buttons, gestures, etc

Goal Driven Navigation

Fly-to (teleport or motion)

- Click on pre-defined "bookmarks"
- Magic telescope
- Wand-based
- Automatic navigation
 - Pre-selected "good" path
- Virtual map

- Select position you want to be at
- Type of widget

Object Driven Navigation

- Objects that transports you
 - Lifts, stairways, teleporters
 - Instant or soft motion
 - Naturally integrated into the scene

Goal and Object Driven Navigation

Challenges and issues

- Need to know where people want to go
 - Virtual architecture
- Poor perceived control
 - May lead to cyber sickness
 - Provide as much control as possible
 - Use soft or instant motions
- Possible disorientation
 - Especially with teleporters
 - Provide navigational cues
 - Use translation, avoid rotation

Compound Navigation

- Combination of navigation techniques
 - Local navigation implicit
 - Larger distances explicit
 - Help the user stay inside their workspace

Compound Navigation

- Explicit information (affects immersion)
 - show virtual boundary or obstacle
 - Steam VR Chaperone
 - show real obstacle (camera)
 - vibrotactile feedback
 - fade out virtual vision
- Implicit guidance (difficult)
 - Put virtual objects in the way
 - Move things in a smart way

Navigation Summary

- Mix of different navigational metaphors
 - Physical navigation in local space
 - Explicit navigation over larger distances
 - Teleporters and maps
 - Important to make it natural, intuitive
- Adapt to hardware, users, tasks, situation
 - Game, CAD, surgery, etc
 - Available workspace, controls, haptics, etc
 - Long or short time use, complex tasks, etc

Common Input Devices

- General purpose devices
 - 3D Mouse
 - Wand / stylus / controller ← the thing!
 - Glove / suite
- Then there are specialized devices/equipment
 - Joystick or wheel
 - "Real" controls

Mouse

- Magellan SpaceMouse
 - Force input, not position
 - Control velocity not position
- Interaction
 - Mouse pointer
 - Control object transform
 - Navigate
- 6 DoF velocity control is hard to use
 - Reduce DoF or use major axis

Wand/Stylus/Controller

- Extension of 2D mouse
 - Real 3D position control
 - Co-located with VR world
- 3–6 DoF in usable form
 - Hybrid tracking
 - Mechanical tracking
- Interaction
 - Pointing device
 - Touch, pick, grab
 - Buttons

Glove

- Hand position tracking
- Finger posture tracking
 - Gestures
 - Commands, e g picking
- Low demand, high price
 - Optical fibres and sensors
 - May change with haptic gloves
- Interaction
 - Select, pick, fly, menus
 - Sign language commands

Suit

Extension of glove

- Trackers and flexion detectors
 - Mechanical exoskeleton
 - Magnetic, optical or ultrasonic trackers
- Monitor body position
- Mostly for motion capture
 - Copy motion to avatar
 - Little use in interaction

What Device to Use

- Select device
 - ...based on application at hand
 - (and possibly availability)
- DoF, accuracy and precision
 - ...based on the application at hand
- Feature set, ease of use and ergonomics
 - ...based on the application at hand

Situation of Interaction

Situation of Interaction

Selection Calculations

- Eye coordinates changes over time
 - ... with head tracking and between eyes
 - So don't use 2D picking!
 - Not one image to work in left or right?
 - Picking in 3D is generally not a 2D problem
- Use 3D coordinates
 - Linear algebra closest object or intersection
 - Explicit handling of coordinates
 - Check your frame of reference!
 - Where is your wand's coordinate system?

Frames of Reference

- VR display system
 - graphics origin frame (world)
 - eye position
- Navigational coordinates
 - graphics origin offset
 - move objects relative the display
 - move the display relative objects

Selection

- Close high quality hand-eye coordination
 - Touch metaphor
 - Walk to the object, reach out and touch
 - Impossible if the object is behind the screen
 - Surprisingly hard to use (no touch need feedback!)
 - Encircle with line (typically on virtual surfaces)
 - Select with pointer/sphere
- Far away
 - Need extended reach
 - Less exact of various reasons

Extending Your Reach

- Pointer metaphor
 - Point at objects to select
 - High precision 6 DoF tracker required
 - Rotation w long lever = large end-point motion
 - Issues in densly populated scenes
 - Select the closest
 - Occlusion

Extending Your Reach

- Mouse pointer on a stick
 - Extendable stick
 - High precision 6 DoF tracker required
 - Rotation w long lever = large end-point motion
 - The tip is the active pointer
 - Control distance
 - Automatic, joystick, gestures

Intersection Checking

- Bounding box checking in scene
 - Check the group during traversial
 - Can any object here be intersected?
 - Use early termination!
- 3D subdivision of larger objects
 - Binary space partitioning tree (BSP tree)
 - O(log n) search time complexity
- Polygonal objects
 - Ignore back faces
 - Faster if you saved the normal

Manipulation

- Natural interaction
 - Pose is mostly no problem grab
 - got 6 DoF, then use 6 DoF
 - Two hands? Drag to rescale and rotate
 - One hand? Need handles or commands
- At a distance
 - Grab is suboptimal HOMER is better
 - Mouse-like behaviour, relative motions
 - Fetch and do local manipulation

Moving, Rotating, Scaling

- One hand metaphors
 - grab, move, rotate
 - zoom/scale

Multi-touch in 3D

- Multi point interaction extends into 3D
 - One point = 3 DoF
 - Two points = 5 DoF

Grab States

Grab Mathematics

Grab Mathematics

$$M_{scwand} M_{\Delta} = M_{model}$$

 $M_{\Delta} = M_{scwand}^{-1} M_{model}$

Initialize upon button press: $M_{\Delta} = M_{scwand}^{-1} M_{model}$ Update during button press: $M_{scwand} M_{\Delta} = M_{model}$

HOMER

- Hand-centered Object Manipulation Extending Ray-casting (1997)
 - Grab at a distance with pointer metaphor
 - Object locks to user-wand line
 - Move and rotate object by moving and rotating wand

Screen Space Interaction

- Use 2D interaction in 3D
 - Any 2D point is also a 3D line of sight
 - Allows for 2,5D touch interaction
 - What does the tangible surface represent? How it is perceived when it's invisible?

Interaction Summary

- Many available methods and metaphors
 - We have just touched a few alternatives
- Best practice depends on situation
 - Size of movements necessary
 - Size of workspace
 - Size of environment
- Fantasy sets the limits, maths is your tool!
 - Many basic metaphors
 - Don't complicate the interaction
 - make an inuitive action-reaction connection

Controls

- Physical
 - In Spatial VR (RMD)
 - Simulate real situation
 - In HMD Covered vision
 - Make them realistic, part of VR
 - Hard to interact with if you cannot see your hands
- Virtual
 - Make navigation controls natural part of VR
 - Non-haptic devices are hard to interact with

Virtual Widgets

- 3D world more possibilities, right?
 - Any object can become a widget
 - Our interaction is typically 2D
 - Widgets typically become panels
 - Few examples of 3D shaped widgets
- Interaction in 3D
 - More space for many, many widgets
 - Natural (and fast) interaction with widgets
 - Gestures (Johnny Mnemonic?)
 - Picking, pointing, etc
 - Virtual controls can be hard to interact with

Potential Issues with Widgets

Occlusion

- Large displayed widgets block display
 - Small widgets have resolution problems
- Context-dependent pop-ups useful
- 3D text is hard to render well
 - (no pixel alignment)
- Distance problems
 - Accomodation discrepancy
- Interaction
 - No physical feedback

Summary

- Navigation and interaction in VR is tricky
 - Many possibilities, but few good guidelines
 - Solve the problem in real 3D coords
- Lots of potential problems
 - Intuitivity, precision, fatigue
 - Complex navigation points
- Important to analyse application
 - Navigational requirements
 - Interaction requirements
 - Features in the application display

