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Figure 1: A schematic representation of the work flow. A sketched pattern of interest is matched to the time-series data. Efficient approxi-
mation, classification and symbol assignment, based on gradient ratios, enables real-time pattern searching within very large time-series. The
steps depicted with green boxes are executed when a new input time series is loaded or when it undergoes hierarchical approximation, yellow
boxes only when a new sketch is entered.

ABSTRACT

Long time-series, involving thousands or even millions of time
steps, are common in many application domains but remain very
difficult to explore interactively. Often the analytical task in such
data is to identify specific patterns, but this is a very complex and
computationally difficult problem and so focusing the search in or-
der to only identify interesting patterns is a common solution. We
propose an efficient method for exploring user-sketched patterns,
incorporating the domain expert’s knowledge, in time series data
through a shape grammar based approach. The shape grammar is
extracted from the time series by considering the data as a combi-
nation of basic elementary shapes positioned across different am-
plitudes. We represent these basic shapes using a ratio value, per-
form binning on ratio values and apply a symbolic approximation.
Our proposed method for pattern matching is amplitude-, scale- and
translation-invariant and, since the pattern search and pattern con-
straint relaxation happen at the symbolic level, is very efficient per-
mitting its use in a real-time/online system. We demonstrate the
effectiveness of our method in a case study on stock market data
although it is applicable to any numeric time series data.

Keywords: User-queries, Sketching, Time Series, Symbolic ap-
proximation, Regular Expression, Shape Grammar.

Index Terms: Information Systems [Information retrieval]
; Human-centered computing [Visualization] : Interaction
Techniques—Visual analytics;

1 INTRODUCTION

Modern experiments, simulations and sensor networks in many ap-
plication domains often produce very long time series data which
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can be very difficult to explore through visual representations, par-
ticularly when the data is non-periodic. Analysts are often seeking
to identify short sequences of interest within these long time series,
such as repeating ‘motifs’ or infrequent anomalies within the data.
Time-series graphs, however, become cluttered when long time se-
ries are being explored and so the visual identification of interesting
short sequences of samples can be almost impossible. For this rea-
son researchers have developed a variety of algorithmic approaches
which attempt to identify such interesting short sequences in time
series using local characteristics of the samples. Such searches are
often conducted using user-sketched sequences or sequence primi-
tives but searching using these local characteristics can be computa-
tionally heavy, making each search a time-consuming problem and
reducing the interactive exploration of the data to a rather tedious
task. In this work we present an approach based on the extraction
of a representative but simplified grammar, involving only a few
tens of symbols, from the time series and search sequence. The
search problem then reduces to a search within the grammar data,
a process which can be completed in milliseconds even for time
series involving millions of symbols. The interactive exploration
process can then involve many searches all being carried out appar-
ently instantaneously. This symbolic search also permits the ana-
lyst to interactively carry out a stepwise relaxation of the constraints
placed upon the search to find more sequences that match the gen-
eral shape of the search sequence but less precisely. This relaxation
requires only an editing of the grammar and no recomputation from
the time series and so can also be carried out in milliseconds, even
for millions of time samples. Employing a freehand or stepwise
sketch-based approach in the definition of the search sequence en-
ables us to keep the domain user in the visual analytics loop by
allowing them to define sequences of interest within their domain
and exploration task. With simple controls to enable the creation of
a sketched sequence, users can perform searches and carry out the
search constraint relaxation processes to enable a full exploration
of the data series. The main contributions are the following:



• Ratio approximation and symbolic representation. While
searching for similar patterns, users often ignore differences
across amplitude, scale and translation [7, 25]. Any pattern
search algorithm should be able to handle these three condi-
tions in an efficient manner. In our method, translation invari-
ance can be handled using string matching algorithms, and
scale and amplitude variance are handled through our shape
grammar induced ratios. The ratios are used to transform the
data into a symbolic representation. The relevance of ampli-
tude, scale and translation invariance in pattern matching is
described in [47] using the “GoalPost Fever” pattern in pa-
tient body temperature datasets.

• User-sketched pattern matching. Our method allows the
user to sketch approximate patterns in a separate sketching
space, either through line strips defined through a sequence
of mouse clicks or free form sketching. Ratio approximation
and symbolic representation are applied to the user input and
a string matching, based on regular expressions (RE), is then
performed in real-time to identify similar patterns.

• Hierarchical locally adaptive approximation. Users are
given the flexibility of performing local approximation of raw
time series data in a hierarchical manner. No extra arithmetic
calculation is necessary since the entire approximation pro-
cess is performed on the symbolic data using RE.

The remainder of the paper is structured as follows. In Section 2,
we will discuss previous work related to dimensionality reduction,
shape grammar based pattern matching, user sketch based search
and regular expression based queries. In Section 3 we present an
overview of our new approach. In Section 4 we describe our shape
grammar algorithm for symbolic approximation. Section 5 presents
our intuitive approach for user input based, locally adaptive hierar-
chical approximation and the flexibility of our shape grammar in
handling noisy input data. In Section 6 we describe the user-sketch
based pattern input and the RE based string matching for finding
patterns similar to the input sketch. Section 7 describes a case study
on a stock market data set to demonstrate the effectiveness of our
approach. Section 8 discusses the performance and scalability of
our algorithm and is followed by a final concluding section.

2 RELATED WORK

Time series data mining is a vast field with numerous papers tar-
geted at query-by-content, clustering, classification, segmentation,
prediction, anomaly detection and motif discovery. A thorough re-
view of time series data mining can be found in [10, 34, 12, 14]. In
our work we are interested in user interaction based pattern match-
ing and hence our method falls under Query-By-Content (QBC),
specifically where the input user queries are entered in the form of
sketches. This section presents the most closely related work.

2.1 Dimensionality Reduction

For high-dimensional time series working directly on the raw data
is computationally expensive. Hence it is common to reduce its
dimensionality by converting it to a lower-dimensional represen-
tation [10]. One of the most popular methods for dimensionality
reduction is symbolic approximation of time series (SAX) [32].
SAX achieves dimensionality reduction by segmenting the data
based on a user specified segment length, assigning a symbol to
each segment, and uses a sliding window of user specified length
to generate a symbolic approximation. Different methods have
tried to visualize the symbolically approximated time series data us-
ing bitmaps [26], VizTree based representations [33] and coloured
rectangles [17] that allow users to visually explore the data. The
SAX algorithm uses piecewise aggregate approximation (PAA)
[23] for dimensionality reduction, but this method cannot capture

local trends, and in turn the overall general shape of the time
series, due to smoothing of perceptually important points (PIP)
[13]. In order to overcome this limitation recent methods sug-
gest storing additional data with each symbol, such as slope in-
formation, maximum and minimum amplitude points, regression
and PIPs [3, 42, 29, 53, 48, 35, 37]. In [30] Li et al. stored ad-
ditional information along with SAX symbols and visually repre-
sent them using Sector Visualization and VizTree. Identification
of repeating patterns and anomalies [45] can be performed through
grammar based approaches as in Sequitur [41] but, again, they are
greedy grammar induction algorithms and so they are not always
complete [46]. Searching for similar motifs using partial match cri-
terion by modifying the Sequitur algorithm were implemented in
[2] without the loss of original performance. This approach helps
us to find sufficiently similar motifs with a tolerance margin for dis-
tortion in the presence of noise. Finding all possible patterns using
a smallest complete grammar is an NP hard problem and [31] im-
proves upon the Sequitur algorithm by considering trigrams (sets
of three symbols that appear consecutively in a sequence), but the
method still does not generate a smallest complete grammar. Meth-
ods such as [54] operate on large time series to find clusters of sim-
ilar patterns. The dimensionality of the data, along with inherent
noise, is reduced using the Douglas-Pecker algorithm which also
retains the PIPs. Data segments in multiscale data from the systems
biology domain were described symbolically by the sign of its slope
in [36]. Even though they use a simple symbolic approximation
based on trend similarity for piecewise linearly approximated seg-
ments [28], they lack query-by-sketch support and a shape grammar
to search for user-defined patterns at different scales.

2.2 User-Sketched Pattern Matching in Time Series

Semi-automatic approaches, such as user-sketched pattern match-
ing in time series data, play an important role in specifying the input
pattern and searching for patterns of interest. Different user input
mechanisms have been used in sketching over a particular part of
the raw data. Rectangular selection techniques called Timeboxes
were used to specify the extent of time points on the horizontal axis
and the range of values on the vertical axis [18, 19]. The rigidity
of the query specification of this technique was improved upon us-
ing Variable timeboxes in [24], angular queries and slopes in [20],
options for query adjustment in [3], timeboxes augmented by pre-
defined shape templates in [4], while Querylines [43] accept soft-
constraints along with user preferences while, at the same time,
ranking the resulting matches based on their importance. In [21]
Holz et al. provided a relaxed selection technique that allows the
user to pan through the data to find patterns of interest, sketch an
approximate pattern over them, along with circles placed along the
sketched line that support user relaxation. But this approach pro-
vides limited scale invariance due to the use of circles for query re-
laxation and to adapt a query on the screen pixel-precise input was
necessary. When users know the pattern of interest it is common
to manually sketch an approximate pattern and search for similar
patterns in the time series data [51]. Some methods identify the
most common shapes such as spikes, sinks, rise, drop, plateau, val-
ley and gaps, and display them as pattern templates [16]. Users can
then search for matches in the data. In [40] a tool was described
that includes the facility for pattern templates that can be created
and stored by domain users. User-sketched queries were used to
perform comparison of rankings of pattern matches produced by al-
gorithms against human-annotated rankings. It was concluded that
human annotated rankings can differ drastically from algorithmi-
cally generated rankings [9].

2.3 Shape Grammar Based Pattern Matching

The shape definition language of Agrawal et al. [1] provides a lan-
guage to describe an alphabet that can be constructed using a set



of symbols and operators. Shape grammar based approaches have
been used in song retrieval by rhythm in music databases [6] where
basic units of rhythm strings called mubols were used as building
blocks. They are constructed by ignoring the pitch value of the
notes and by considering only the duration of each note. They
then propose methods for exact matching or k-similar matching of
rhythm strings.

2.4 Regular Expression Based Query Matching

The work on approximate queries [47] finds a possible set of shapes
that are represented using curves or functions and uses regular ex-
pression queries for pattern matching but does not provide a user
interface for a visual query language in which the user can draw
the shape of the sequence they are looking for. Such a language
can allow the user to point out the important dimensions for com-
parison and the error tolerance in each dimension. Methods such
as [27] search for temporal trends in multivariate time-varying data
and trend specification is either through domain users who identify
certain common trends in the data or using a clustering algorithm.
But they highlight the need to use regular expressions for manual
specification of any kind of input user queries. The advantages,
such as intuitiveness and flexibility (fuzzy queries), of using reg-
ular expressions for specification of user queries are discussed in
[15].

3 OUR APPROACH

We extend our idea presented previously as a poster abstract [22]
with additional details and significant improvement. User queries
using sketches is an interactive method for creating search patterns
in time series data. While regular expression based user queries can
be intuitive and flexible, as discussed in [15], the method described
in our paper allows a user to search for any pattern of interest by
sketching an approximation of it in a graphical user interface. Pre-
vious user query methods used the extensive process of browsing
through the entire data to find patterns of interest, specify methods
for selecting such patterns and search for them in the rest of the data.
As this method is tiresome, there is a need for creating an intuitive
visual interface to sketch any patterns of interest by the domain spe-
cialist. So it becomes imperative to create a shape grammar based
approach for user-sketched pattern matching and data smoothing.
Since we are dealing with user input based queries, preserving the
shape characteristics on a local scale is important. While the dis-
cussed dimenionality reduction methods were effective in reducing
the size of raw data by transforming them to a different represen-
tation, the need for preserving the shape characteristics on a local
scale is important for a user query based system. As we are in-
terested in a real-time system involving domain user interaction,
the computational cost should also be minimal. Our method ap-
proaches this problem using a shape grammar based method that is
optimized for user-sketched pattern matching and we take inspira-
tion from the symbolic approximation of time series, shape gram-
mar based pattern matching, regular expression based queries and
semi-automatic user sketched pattern matching algorithms. Our
method has been implemented within a web-based interface and
involves four basic steps. (1) Initially the time series data to be
explored is simplified into a symbolic representation by comput-
ing ratios of the gradients between adjacent time series points. (2)
Classification of the gradient ratios into a set of basic cases mak-
ing up the building blocks of any time series. (3) As we are inter-
ested in searching for local trends in the input data, we perform a
progressive, hierarchical, locally adaptive, user controlled smooth-
ing operation on the raw data. The computation is performed in
the symbol space using regular expressions instead of performing
arithmetic computations on raw data. (4) Following this, a user can
search for patterns of interest in the time series by sketching an ap-
proximate pattern. Translation, amplitude and scale-invariant pat-

tern matching is achieved using regular expressions at the symbolic
level. The previous step can be repeated to iteratively smooth the
data to search for long term trends. We demonstrate the effective-
ness of our approach in a case study on stock market data although
it is applicable to any numeric time series data. While many previ-
ous visual analytical methods [44, 54, 55] on financial data analysis
proposed many visualization models for finding patterns in time se-
ries data, our method is based on simple user queries for finding
patterns in the data.
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Figure 2: The set of unique building block cases numbered from
1-13 are identified as elementary shapes within a time series. Each
case containing two gradient slopes is the smallest unit that can
be represented as a ratio value. The range of values from 0.0-1.0
can be divided and approximated into ‘n’ symbols. (a)Ratio value
computed by dividing absolute values of lowest gradient by highest
gradient. (b)Ratio value is the absolute value of non-zero gradient.
(c)Ratio value of absolute gradients is 1.0 and represented using a
single symbol. (d)Linearly increasing, decreasing and zero gradi-
ents, each approximated to a single symbol. These are the simple
building blocks of an intuitive user sketch based input. s1 to s13 are
the set of symbols used for approximating each building block case.

4 SYMBOLIC APPROXIMATION USING SHAPE GRAMMAR

The idea behind a visual query language is to provide a simple
sketching interface allowing domain-experts to roughly draw a pat-
tern of interest. This pattern can then be matched against the raw
input data and similar patterns that are invariant across scale, ampli-
tude and translation are identified. As the method is based on user
input and interaction, the above process should be intuitive and per-
form in real time. Input from user-sketching will be in the form
of three simple shapes: linearly increasing, decreasing, constant
and their mutual combinations that form a visual grammar which
conforms to an intuitive user-input model. Also the visual repre-
sentation of time series is a combination of the above three simple
shapes. In the process of building this visual grammar, we identify
both the user sketch and time series data as a combination of basic
elementary shapes that are positioned across different amplitudes
(see Figure 2). The elementary shapes are constructed in a simple
manner so that each of them can be represented as a ratio value that
aids in scale invariant pattern matching and also can be reduced to
symbols (see Figure 5). The basic building block contains only 13
patterns, rather than other possible combinations. We identify only
the minimal number of building block patterns that can be used to
build any time series representation. Such a minimal definition is
needed because it helps us to build simple regular expressions to
perform data smoothing at later stages in the algorithm to handle
the inherent noise in the data. We now describe the process of our
approach in detail as illustrated in Figure 1.

4.1 Normalization and Approximation

The input data and user sketched pattern are first normalized to the
range 0.0 to 1.0. The nature of the input can either be standalone
or streaming data and our algorithm is well suited to handle both
cases. We perform an initial approximation on both the input data
and the user sketch, where consecutive positive/negative gradients
of different lengths across n time steps are replaced with n linear
gradients of equal length as shown in Figure 4. The dissimilari-
ties in pattern matches that arise from amplitude and translation are
handled using the ratio of adjacent gradients, while the scaling issue
is addressed by our approximation step.



Figure 3: Top: Small random input time series of length 103. Adjacent gradients that fall under any of the multi-symbol cases of Figure 2
are mapped to their corresponding columns. For example, 6 instances of Case 2 are highlighted in blue on the time series graph towards the
left of the Figure and these 6 instances are binned accordingly based on their ratio values and highlighted in blue towards the right. Bottom:
Random input time series of length 600. The bins on the bottom right contain ratio values that are almost uniformly distributed across the
entire value range of ratio values from 0.0 to 1.0. We observe that when the size of the input data becomes large there is a basic building
block shape for every possible ratio value.
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Figure 4: Initial approximation of consecutive positive or negative
gradients. (a) Input data, (b) Approximated data.
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Figure 5: Example cases for ratio calculation: Each building block
case is represented by a ratio value from 0.0 to 1.0. A smaller gradi-
ent followed by larger gradient and vice-versa are differentiated into
separate building block cases meaning that the ratio value is always
between 0.0 and 1.0. Ratio values falling under a certain range, for
example 0.0 to 0.25, can be approximated to a single symbol.

4.2 Basic Building Blocks of a Time Series

After the normalization and initial approximation step, we calculate
the gradients g j and g j+1 from time series points t j, t j+1, t j+2 by
sliding a window with a length of three time points across the time
series. Since we consider equal time steps, the gradient between

two time series point is g j =
amplitude(t j+1)−amplitude(t j)

d , where d is
the distance between two time steps. g j and g j+1 can be approx-
imated to a single ratio value based on the classification shown in
Figure 2. With our sliding window step, we compute the ratios of
all gradients, g j and g j+1, falling under each particular case. We
find the smallest among g j and g j+1 and then compute the ratio
value. For example, consider the building blocks in Figure 2(a),
case 1: g j>g j+1, the ratio value is g j+1/g j , case 2: g j<g j+1, the
ratio value is g j/g j+1. In case 1, the entire group of building blocks

having g j>g j+1 can be represented using ratio values in the range
0.0 to 1.0. In Figure 2(b), where any one of the gradients g j or g j+1

is zero, we consider the non-zero gradient to be our current ratio
value. Since d is uniform we consider d=1.0 and hence the range
of ratio values for this case will also be between 0.0 and 1.0.

4.3 Classification and Symbol Assignment

Each set of three time series points t j , t j+1, t j+2 provided by the
sliding window step is categorized into its respective building block
case as described in the previous section and the ratio is computed.
Building blocks of a particular case that are similar to each other
will have similar ratio values and hence can be approximated using
a symbol. Also, when the size of the input time series increases, the
ratio values are distributed across the entire range from 0.0-1.0 (see
Figure 3). This removes the need for explicit binning algorithms
and hence a simple uniform binning can be applied. For example,
if the size of the alphabet for a particular building block bin (case 1)
is 4, the uniform binning algorithm will approximate the ratio val-
ues falling under 0.0-0.25 to a, 0.25-0.5 to b, 0.5-0.75 to c and 0.75-
1.0 to d. Uniform binning is applied to all the building block cases
except the cases 9-13 in Figure 2 since they can be represented with
a symbol. Cases 9 and 10 have equal absolute value of the gradi-
ents, g j and g j+1, and hence the same amplitude value. Since we
are interested in scale invariant matches, all these cases containing
different amplitude values will be approximated to a symbol. Cases
11, 12 and 13 form the simple building blocks of linearly increasing
or decreasing, and zero gradients and each one of them can also be
approximated to a symbol. The size of distinct alphabets required
for symbolic approximation of a particular building block can be
kept to a minimum due to the high resemblance in user specifica-
tion of a building block during sketching. At this stage, the input
time series data and user-sketched pattern have been converted to
an approximate symbolic representation.

4.4 Building Blocks in the form of Regular Expressions

One interesting feature of our visual query language is that, due
to the approximation step and shape definition based classification,
the time series data can be expressed as a regular expression (RE)
of the form below,

(z∗ |p∗ |n∗)?(s(z∗ |p∗ |n∗))∗ (1)



where the symbols z, p, n represent the zero, positive and negative
gradient shapes (cases 11, 12 and 13), respectively, and s represents
the cases 1 to 10 in Figure 2. ? represents one or zero occurrences
while ∗ represents zero or more occurrence. This common repre-
sentation is exploited for RE based string matching and hierarchical
approximation of time series in the following sections. When we
construct a finite automaton from our RE the output is a determin-
istic finite automaton (DFA).

5 SMOOTHING THE DATA USING SHAPE GRAMMAR

Two primary concerns need to be addressed while pattern matching
the user sketch with input time series data, (1) As we are interested
in searching for local trends in the time series data, insignificant
spikes and valleys that would not alter the local trend can be ap-
proximated. Since they are approximated to symbols, as explained
earlier, they are a hindrance to our regular expression (RE) based
shape matching. (2) A domain user may be interested in find-
ing short term trends across a few time points or long term trends
across a larger time interval and hence a user input based hierar-
chical smoothing will help them to search for trends across short
or long time intervals. By taking these two factors into consid-
eration we perform a hierarchical locally adaptive approximation,
i.e. the input data can undergo smoothing in a hierarchical fashion
based on user interaction. The advantage of performing a locally
adaptive approximation rather than a piecewise adaptive approxi-
mation (PAA) is that the latter can potentially smooth out important
points in the data set due to the constant sized bins used to com-
pute the average of all the time points within that bin. Smoothing
of time series data by dimension reduction techniques such as the
Douglas-Peucker (DP) algorithm [8] has been used in time series
simplification methods [49, 54]. While this is an effective method
for time series smoothing, our algorithm operates on a symbolic ap-
proximation of the raw data and so avoids arithmetic calculation at
each approximation step. The advantage of our approach lies in the
central theme of using REs for user-query specification, smooth-
ing and pattern search in time series data. RE based user-query
specification is intuitive, flexible (fuzzy queries) [15] and allows
pattern searching based on RE based string matching which is effi-
cient [50]. The distance epsilon parameter in DP is similar to that
of our ratio approximation threshold used for controlling the er-
ror induced in each hierarchical smoothing step. Figure 6 portrays
the hierarchical smoothing applied to stock market data where (a)
depicts the minimum level of approximation and (c) the near max-
imum level of approximation. The stock market data covers a time
period of roughly 7 years and hence the maximum level of smooth-
ing can be used to find a pattern that extends over a long period of
time. Figures 7(a), 7(b), 7(c) show the smoothing algorithm ap-
plied to other kinds of input data (Datasets courtesy of [52, 46]).
The algorithm is explained below.

5.1 Approximation algorithm

Smoothing the input data can be seen as a transformation of cases
1 to 8 in Figure 2 represented using multiple alphabets/ratios into
cases 9 to 13 that can be represented using a single alphabet. Hence
the smoothing process is a further simplification of the symboli-
cally approximated data. Our approximation algorithm operates in
the symbol space of the raw data. While performing the smoothing
operation of symbolic data, sufficient care should be taken to en-
sure that the minimum amount of smoothing error is introduced
at each approximation step. We always consider a combination
of two building block cases from Figure 2 for approximation as
shown in Figure 9. We started our symbolic approximation algo-
rithm in the previous section with two consecutive gradients of raw
data for symbolization and approximation. Now, in our next step of
smoothing of symbolic data, we consider two consecutive symbols
corresponding to building blocks for smoothing. In Figure 9(a) the

(a) Least level of approximation

(b) Medium level of approximation

(c) Near Maximum level of approximation

Figure 6: Multiple levels of smoothing on Stock market data. The
chart at the top depicts the minimum level of approximation and
after every user input based smoothing iteration, the approximation
increases. The red lines indicate the approximated input data.

pattern is a combination of building block cases 1 and 4. While
carrying out the approximation, we follow a general rule that min-
imizes the smoothing error at each step as portrayed in Figure 9.
(1) In Figure 9(a) the ratio of gradients g2/g1 and g2/g3 is less
than zero and the pattern is approximated to a positive or negative
gradient slope accordingly. (2) In Figures 9(b) and (c) the ratio of
gradients g2/g1 and g2/g3 is greater than zero and so the pattern
is approximated to a positive or negative gradient slope based on
a user defined ratio approximation value (see Section 5.4). (3) In
Figures 9(d) and (e) one of the ratios of gradients g2/g1 and g2/g3

is greater than zero and the other less than zero. In such scenarios,
there is a high smoothing error and they are skipped for the next
iteration of the approximation step. In addition, two building block
combinations are the basic unit of symbolically approximated data
and by considering only two of the fundamental building blocks at
a time, we minimize the local approximation error. Combinations
of building block shapes can extend across two adjacent symbols
(four time series points) or can be scaled and extend across multi-
ple symbols (many time series points). In the former case, a slid-
ing window and alphabet comparison can be performed to smooth
the data, while in the latter case regular expressions (RE) ought to
be used. Even though the two adjacent symbols can also be ap-
proximated using REs in a single step, we prefer to separate them
into two steps. The reason for separating the adjacent symbol and
RE based approximation is due to the fact that a smoothing step to
approximate the two adjacent symbols can consume other nearby
trends over long intervals as well. So we first remove the scenarios
pertaining to two symbol cases and then continue with RE based



approximation. The two step process is explained below.

5.2 Approximation of consecutive symbols

We start by sliding a window of length two across the symbolic
approximation. All the patterns in column 1 of Figure 8 are ap-
proximated to their counterparts in column 3. While performing
the approximation, the original time series data conforming to the
particular alphabet set is updated with positive, negative or constant
slope. The index of a symbol in approximated space corresponds to
the starting time series point of the shape in the raw data.

(a) Data smoothing of monthly values of the The Southern Oscillation Index.

(b) Data smoothing of 10-day mean light intensity recordings of Carinae

variable star.

(c) nprs43 data smoothing. Similar trends in the neighboring regions are

approximated, while the disparities in trends in the neighboring regions are

retained for the next smoothing iteration.

Figure 7: Locally adaptive data smoothing across different datasets.
The red lines indicate the approximated input data. Significant
anomalies are still retained in the approximation step.

5.3 Approximation using regular expressions

When a combination of two building block cases extend across mul-
tiple symbols, regular expression (RE) based string matching can be
performed. We apply a sliding window based approach by employ-
ing RE based prefix match function to check for matches. All the
REs mentioned in column 2 of Figure 8 are applied to find a match.
The last two entries of the column contain only two combinations
of positive, negative and zero gradient slopes while the other com-
binations are omitted due to space constraints. If there is a match,
the set of symbols corresponding to the match are replaced with
symbols for positive, negative or constant slope. The next RE pre-
fix match then starts from the end position of the previous match.
Based on the user input for approximation error (see below section),

if we cannot approximate a RE, then the index is moved to the im-
mediate symbol that does not correspond to positive, negative or
constant slope of RE. Algorithm 1 (next page) explains the above
process step by step.

5.4 User controlled approximation

As explained in Section 5.1, in order to minimize the local smooth-
ing error we omitted the cases (d) and (e) of Figure 9 from further
approximation. We do, however, give the user the ability to control
the approximation in cases (b) and (c) by setting a ratio approxima-
tion threshold below which the patterns will not be approximated
further. In Figures 9(a) and (b) the ratio between gradient ratios
rg1/rg2where rg1 = g2/g1 and rg2 = g2/g3 is close to 1.0 while in
Figure 9(c) it is approximatedly 0.5. If we set the ratio threshold to
be 0.25, then the above cases will also be approximated. After the
approximation the raw time series points are updated accordingly
and the symbolic approximation step is re-run to generate the new
symbolic approximation.
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Figure 8: First column: Combination of two building block shapes
that can be approximated to their counterparts in the third column.
Second column: Corresponding regular expressions used to search
for such patterns in the symbolically approximated data using a
sliding window based approach.

5.5 Final symbolic approximation for pattern matching

We perform the smoothing operation on the symbolic approxima-
tion of the raw data and all the building blocks from case 1 to
case 10, each represented by multiple symbols, approximated to
a single symbol building block case of 11, 12 and 13. At this stage,
the symbolic approximation will contain chunks of symbols s11,
s12 and s13 and there is always a symbol associated with every
time interval of the original data as shown in Figure 10(b). At a
higher level of approximation, this increases further and hence it
is redundant to use this symbolic approximation for pattern match-
ing using regular expressions (RE). We can shorten this even fur-



ther by running our symbolic approximation of Section 4, except
in this case we use regular expressions for searching for each in-
dividual building block case of Figure 2. We can do this by using
one RE for cases 1 and 2, one RE for cases 3 and 4, and one RE
for each case from 5 to 8. For example, cases 1 and 2 have the RE
s∗11(s1|s2|s9)s

∗
12. Based on the gradients of matching patterns, we

can classify the building blocks as shown in Figure 10(c). This ex-
tra step also avoids false matches during user sketch based pattern
matching. Since the smoothing operation is carried out in the sym-
bol space, in order to find the ratios of building blocks we index the
original timeseries data point. We can also use the length of the RE
matches to find approximate ratios in case we wish to discard the
raw data after the initial approximation.
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Figure 9: Controlled approximation: At each stage of approxima-
tion we make sure that minimum error is introduced, thereby pre-
venting the shape of local trends from distortion. (a), (b) and (c)
have the minimum level of approximation error while (d) and (e)
have higher levels of smoothing error.
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Figure 10: Final approximation step: (a) Raw time series data.
(b) After smoothing operation on symbolic data (c) Final approxi-
mation step where the symbolic data in itself is approximated fur-
ther thereby removing redundant data for string search and avoiding
false matches. Numbers indicate the building block cases corre-
sponding to the adjacent gradient pairs.

6 USER SKETCHED PATTERN MATCHING

After setting the input time series to the desired level of approxi-
mation, users can search for specific trends in the data by sketching
a rough pattern. Our application interface, shown in Figure 12(a),
consists of an input data display, a user sketching space and interac-
tion controls. A user can draw a rough sketch of the sought pattern
in the sketching space and it is processed in the same way as the
input time series data. Our algorithm does not impose hard con-
straints on the patterns and the users are free to draw only a rough
sketch of the pattern. Such soft-constraints reduce the need to per-
form tiresome user interaction during user sketching. Our interface
allows the user to sketch input data using line strips constructed
with mouse clicks or perform a free form sketching by holding the
mouse button and drawing a rough sketch of interest. The later
case is handled using finite difference methods (FDM) [38] to com-
pute the skeleton points representing the input. Since we deal with
data generated at uniform time intervals, we convert the input data
to the same format by adjusting the horizontal coordinates of the
input points into equal spacing. The sketch is converted to a sym-

Algorithm 1 User input based data smoothing

1: function SMOOTHING(sym, data)
2: i← 0
3: while i 6= symbol.length do
4: if ((m = rE1.matchAsPre f ix(sym, i)) 6= null)∨
5: ((m = rE2.matchAsPre f ix(sym, i)) 6= null)∨
6: ((m = rE3.matchAsPre f ix(sym, i)) 6= null)∨
7: ((m = rE4.matchAsPre f ix(sym, i)) 6= null) then
8: i← m.end
9: updateRawData(data,m.start,m.end)

10: else if ((m = rE5.matchAsPre f ix(sym, i))) 6= null∨
11: ((m = rE6.matchAsPre f ix(sym, i))) 6= null then
12: Calculate length of gradients
13: Calculate ratio of length of gradients
14: if (ratio1≤ 1.0)∧ (ratio2≤ 1.0) then
15: i← m.end
16: updateRawData(data,m.start,m.end)
17: else if (ratio1 > 1.0)∧ (ratio2 > 1.0) then
18: if (ratio1/ratio2)≥ ratioT hreshold then
19: i← m.end
20: updateRawData(data,m.start,m.end)
21: else
22: i← m.nextAl phabet
23: end if
24: end if
25: i← m.nextAl phabet
26: updateRawData(data,m.nextal phabet,m.end)
27: else if ((m = rE7.matchAsPre f ix(sym, i)) 6= null)∨
28: ((m = rE8.matchAsPre f ix(sym, i)) 6= null) then
29: i← m.nextAl phabet
30: updateRawData(data,m.nextal phabet,m.end)
31: else
32: i← m.nextAl phabet
33: end if
34: end while
35: end function

bolic approximation in the same way as the input time series data.
Since we use regular expression (RE) based pattern matching, the
symbolic representation of the user sketch is converted to a RE for-
mat. As our method does not impose hard constraints during the
pattern search, sufficient care should be taken while building the
REs to find similar matches. Let us take the so-called ‘Head and
Shoulders’ pattern from the financial domain as an example. When
constructing the RE with soft constraints, sufficient care should be
taken to avoid false matches. Every odd number alphabet of the
symbolic data is critical in maintaining the overall shape and trend
of the pattern. In Figure 11(a) contains a sample input user sketch.
The building block cases of the same are numbered accordingly. In
(b) we find that the 1st, 3rd and 5th building blocks are updated to
their counterparts and still the overall trend of the pattern remains
the same. Cases 1 and 2 are upward patterns, while cases 3 and 4 are
downward patterns and they are treated as similar patterns in odd
number building blocks. Figure 11(c) clearly portrays the change
in the overall trends of the pattern when the even number building
blocks are replaced with their equivalent counterparts. Such an ap-
proach helps to avoid false positives being matched through REs.
For this example, the RE for user sketched pattern will be,

(s1|s2)
+(s4)

+(s1|s2)
+(s3)

+(s1|s2)
+ (2)

Using this pattern as input, we perform a RE based string match-
ing with the user controlled symbolically approximated input time
series data. The resulting matches are then highlighted accordingly
in the input data as shown in Figure 12(a). Our approach provides



the user with flexibility for relaxation by allowing them to search
for similar matches with soft constraints. Users can perform a hi-
erarchical approximation of the input time series data to find pat-
terns covering a long time interval. In contrast to the previous ap-
proaches, our user relaxation approach does not involve arithmetic
re-computation. One disadvantage with our method, however, is
that the string matching algorithm skips overlapping matches but
this can be overcome with a small modification whereby we always
check neighboring set of symbols for a match.
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Figure 11: Construction of REs for pattern matching. Alphabets in-
dicate building block cases. (a) Input sketch. (b) The overall trend
of the pattern remains unchanged even when odd number build-
ing blocks are updated. (c) When even number building blocks are
changed, the overall trend of the pattern can become distorted.

7 CASE STUDY

We will study some test cases that demonstrate our method with
an input data from the stock market as shown in Figure 12(a). The
data was downloaded from the NYSE database for the ticker sym-
bol ADM from 1st May 1997 to 30th October 2004. The input data
consists of 1886 time points. One of the prime features of the al-
gorithm is the ability to identify both short and long term patterns
with soft constraints that are invariant across scale, amplitude and
translation. The input will be in the form of rough user sketches
and a RE based string matching is performed in real-time to search
for matches. The original raw time series data will be displayed in
black, the hierarchically approximated time series in blue and the
pattern matches in red. Case 1: ‘Head and shoulders’ pattern.
This pattern in the financial domain is made up of a peak followed
by a higher peak and then a lower peak. Domain users can draw
a rough pattern of it in the sketching space followed by setting a
desired level of approximation and smoothing on the raw time se-
ries data as shown in the Figure 12(a). Also, we can notice the
neighbouring overlapped matches are not highlighted, which can
be verified visually, but with small changes to the algorithm we can
highlight overlapped matches with sufficient visual identification
to differentiate from non-overlapped matches. Case 2: ‘Inverted
head and shoulders’. The inverted head and shoulders pattern in
the financial domain is made up of a trough followed by a deeper
trough and then a shallower trough as shown in the Figure 12(c).
Case 3: ‘Double top’. Double tops or double bottoms in the finan-
cial domain consist of two peaks or troughs of similar magnitude as
shown in the Figure 13(a). Due to the flexibility of our algorithm in
providing for soft-constraints, two similar peaks are highlighted. At
the same time, the algorithm does not allow for false matches that
completely distort the trend in the pattern. Case 4: ‘Triple top’.
Triple tops or bottoms are identified by three peaks or troughs of
similar height as shown in the Figure 13(b).

8 RESULTS AND DISCUSSION

Our method has been implemented on a Dart and WegGL based
framework and tested on an iMac running OS X El Capitan with
3.5GHz Intel Core i7 processor, 16GB RAM and an NVIDIA
GeForce GTX 775M graphics card with 2GB memory. The pro-
cessing time for the algorithm to perform the symbolic approxima-
tion and regular expression based string search are the main com-
ponents in the data exploration and so the prime candidates for per-
formance analysis. We tested our algorithm with financial data sets
and other real world data sets containing thousands of time points

(a) Interactive web-based application. Case 1: Searching for the head and shoulders

pattern with lower level of smoothing on the raw data.

(b) Case 1: Incremental smoothing of the raw data and searching for long term head

and shoulders pattern matches.

(c) Case 2: Incremental smoothing, searching of inverted head and shoulders pattern.

Figure 12: Hierarchical smoothing and pattern matching. The re-
sulting matches are shown in red.

and synthetic data sets with one hundred thousand time points. As
our algorithm has linear time complexity, it is evident that the pro-
cessing time is linear and of the order of milliseconds. Regular ex-
pression based string matching is necessary to search for matches
at different scales. In the shape grammar, cases 11,12 and 13 are
responsible for the presence of multiscale patterns. Our method uti-
lizes the regular expression string search of the Dart framework and
we tested it against user sketches having 5,10 and 15 time points in
a large input time series data and the time taken is in the order of few
milliseconds. Advanced regular expression string search algorithms
as presented by Thompson [50] can increase the performance for
millions of time series points. In the current implementation, the
Dart framework supports only non-overlapping regular expression
matching but, with a small modification, it is simple to check for all



possible overlapping matches by starting the search process from
the index of the previously matched pattern and looping it until
there are no more matches.The method is not suited for low res-
olution periodic data as the regular expression based smoothing op-
eration can distort the periodicity of the data based on local trends
contributing to noise. When we decrease the ratio approximation
threshold to a very low value of 0.05, as explained in Section 5.4
the data can be over-approximated and hence it may lose essential
local trends as shown in Figure 14. Keeping the threshold close to
1.0 during the initial steps of smoothing will make the approxima-
tion step less error prone.

(a) Case 3: Incremental smoothing and searching of Double top pattern.

(b) Case 4: Incremental smoothing and searching of Triple top pattern.

Figure 13: Hierarchical smoothing and pattern matching. The re-
sulting matches are shown in red.

(a) Smoothing step1 (b) Smoothing step2

(c) Smoothing step3 (d) Smoothing step4

Figure 14: Ratio approximation threshold of 0.05. Top left chart
depicts the minimum level of approximation and in four smoothing
iteration, we get the maximum approximation in bottom right chart.

The method described in this paper is a first step towards creat-
ing a visual query based shape grammar that is suitable for user-
sketched pattern matching in real-time and performing all the oper-
ations in the symbolic space rather than on raw data. The shape
grammar can approximately model any time series graph. The

algorithm is also suited to work with streaming time series data
where we always wait for a time point t and using the previous
two time points t-1, t-2 we constitute a basic shape and symbol-
ize them accordingly. While the method does not involve absolute
value matching, an absolute value range can be provided by the user
as input and the search results restricted accordingly by compar-
ing with the raw time series data. In future work we will compare
the efficiency of regular expression based user query-specification
and pattern matching against popular existing pattern matching ap-
proaches across different domains such as [39, 5, 11].

9 CONCLUSION

We have introduced our initial work on an interactive sketch-based
pattern search algorithm that works in real-time with a significant
level of accuracy and without complex user interaction. For a time
series of length 100k, the time taken for symbolic approximation,
relaxation and pattern matching is of the order of milliseconds. The
pattern matching is also amplitude, scale and translation-invariant.
This is achieved through careful approximation by breaking the raw
data into a set of basic shapes and computing their ratios, whereby
removing the amplitude information associated with them. One im-
portant contribution of our work is that we perform constraint relax-
ation, data smoothing and all operations in the symbol space rather
than on the raw data. Such a method removes the need for arith-
metic recomputation for pattern relaxation and matching. In the
future we plan to explore equiprobable symbols that can be used
for indexing and storage, along with prefix tree based approaches
to search for similar patterns of different lengths.
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