
Chapter 1

Computer Graphics at a
glance

c©Stefan Gustavson 2016-2017 (stefan.gustavson@liu.se). Do not distribute.

1.1 Overview

In the last few decades, computer graphics has evolved from a niche appli-
cation of mostly academic interest to a common tool for image generation.
A large number of images that are produced today do not emanate from
a camera, but are generated in part or in their entirety by software in a
computer.

While becoming more common, computer graphics has also become a
more complex subject. In its early days, computer graphics used to be
almost impossible to do, and in order to get any results at all you had
to resort to simple and crude methods that were just barely good enough.
To put it bluntly, you had to cheat. Over time, the cheats have become
better as the processing power of computers has increased tremendously, and
computer graphics can now reasonably be called a proper field of applied
mathematics rather than a collection of software hacks. The hacks and
cheats are still being used for interactive content like games, and they can
still be good enough when the requirements on image quality are not too
high, but even real time rendering methods are rapidly getting better and
more advanced.

As a result of this improvement, it requires quite a lot of time and effort
to get to the forefront of today’s research and development in computer
graphics, even if you restrict yourself to a narrow sub-topic. When taking
the first steps in the field, it’s easy to be confused, even intimidated, and it’s
useful to have a broad overview of the many aspects of the complex subject,
a ”map”, so to speak. A conceptual map of computer graphics in the broad
sense is presented in Figure 1.1. The figure is explained in detail below.

1



2 CHAPTER 1. COMPUTER GRAPHICS AT A GLANCE

SCENE

Objects

Materials
RenderingLights

Camera Image(s)

Animation

Simulation Feedback

Figure 1.1: The technical components of computer graphics

1.1.1 Viewing

Starting at the far right, we have a human observer in the system. This
might seem obvious, but it’s important to keep in mind that the purpose of
computer graphics is to create an impression in a human mind by presenting
an image to a person. The primary concern, in fact the only concern, is what
people see. The fact that a human viewer is an inherent part of the problem
has a tremendous impact on the solutions.

1.1.2 Rendering

Second from right, we have the output of the process, the image. The process
of computing a computer graphics image is called rendering. In technical
terms, a film or video sequence is nothing but a sequence of still images
presented in rapid sucession, and rendering of animated content is simply a
matter of rendering still images with small incremental differences between
frames. Some information can sometimes be saved between frames to speed
things up, but broadly speaking, each frame of a sequence is rendered more
or less separately.

Off-line versus real time

Animated content can be rendered to images and assembled off-line to a
video sequence for later viewing, like for an animated movie or a special
effects sequence, or the rendering can be performed in real time while the
images are being watched, like in a computer game or a virtual reality ap-
plication. Real time rendering places heavy demands on rendering speed.
When rendering and displaying 30 or even 60 frames per second, you have
only a few milliseconds to render an image with around one million pixels.
That’s only a few nanoseconds per pixel – a very small amount of time even
for a computer. In off-line rendering, on the other hand, you can spend a lot
more time on each image. A few seconds rather than a few milliseconds per



1.1. OVERVIEW 3

frame is not a problem, and it’s not uncommon to spend minutes or even
hours on each frame if image quality is important. Five hours is a million
times longer than 1/60 second, and, of course, being able to spend a million
times more work on each image makes it possible to perform more compu-
tations, and computations of an entirely different kind, during rendering.
Some frames can also be allowed to require more work than others. This
not an option for real time rendering, where any extra delays would cause
stutter in the frame rate.

This roughly million-fold difference in the required speed between real
time rendering and off-line rendering is a huge gap which is not easily
bridged. For the foreseeable future, real time rendering will continue to
be constrained by the available resources and forced to use simpler render-
ing methods with less accurate simulations of optics and physics, and it will
remain important to know what can be done, to know what is important
for the situation at hand, and to spend the limited resources wisely.

1.1.3 Scene

The rendering process takes as its input a description of a virtual scene. The
scene must contain geometric objects, surface properties of those objects in
the form of materials, some description of virtual light sources to illuminate
the scene, and some representation of a virtual camera to determine the
vantage point of the rendered image. A virtual scene is generally a very
large and complex data structure which requires careful design to be useful
and efficient.

Objects

There are several different ways of representing objects in computer graphics.
Solid objects can often be represented only by their surface, for example as a
mesh structure with vertices, polygons connecting those vertices and surface
normals to represent the surface orientation. Today, the polygon mesh is
the invariably most common representation of objects in 3D graphics, both
for real time and off-line rendering. It’s a simple representation, but still
flexible and general enough to be useful in many different circumstances.
The polygons are mostly triangles, because a triangle is guaranteed to be
planar, and any other polygon may be composed from two or more triangles.
3D modelling software often presents a mesh of quadrilaterals to the user
for greater ease of use, but each quadrilateral is internally composed of two
triangles.

Another common and useful object representation is a parametric sur-
face, often represented as a set of control points and interpolating functions
to determine where the surface is between those points. A different strategy
for object representation is implicit surfaces, where a matematical expres-



4 CHAPTER 1. COMPUTER GRAPHICS AT A GLANCE

sion in 3D coordinates determines what is the inside and the outside of an
object. The implicit representation makes it possible to also represent a
more complex volume, either as an enclosed surface with an interior density
function or as a continuously varying volumetric function which is defined
for every point in space. Volumetric information can also be represented as
sampled data on a regular grid, which works a lot like pixel grids for 2D
digital images, only with small rectilinear 3D voxels instead of 2D pixels.
Such voxel volumes can represent sampled real world data or computed data
from simulations.

Materials

Surfaces have a position and an orientation, which are both represented by
the geometrical model, but they also have surface properties which deter-
mine their appearance. Real world surfaces are typically not a single color
all over, but have a pattern of some sort. In computer graphics, this is mod-
elled by a texture map on the surface, which can either be a mathematical
function evaluated by a short program, so-called procedural texturing, or a
sampled digital image represented as pixels, often referred to as a bitmap
texture. Texture mapping requires some sort of texture coordinates to de-
termine the position, orientation and size of the pattern on the surface.

Texture mapping can be used to vary any property of a surface, not only
its color. Properties that are often mapped include transparency (”alpha”)
and glossiness. A texture an also be used to locally adjust the surface normal
from its true direction to make a surface appear rough, despite being a flat
polygon. This is called bump mapping or normal mapping. A texture can
also be used to simulate reflections from shiny surfaces, so-called reflection
mapping.

Another important property of a surface is its reflectance variation with
the angle of incidence for the illumination and with the angle of view.
The surface reflectance as a function of these two angles is called the Bi-
directional Reflection Distribution Function, or BRDF for short. Modelling
a BRDF to closely match that of a real surface is an ongoing effort in com-
puter graphics research, and there are quite a few different reflection models
in common use to model different kinds of surfaces.

Particularly complicated to simulate, but also quite important for many
scenes, are materials that exhibit subsurface scattering. This means that the
surface is not completely opaque, but that light penetrates some distance
into the object before being reflected. This is a significant contributing
factor for the appearance of many real world objects, like skin, milky or
murky liquids, clouds and translucent plastic. Thin or small objects with
subsurface scattering also allow some of the light to pass through to the
opposite side of the object, making their appearance still harder to simulate.



1.1. OVERVIEW 5

Light sources

Most applications of computer graphics are making at least some sort of
visual simulation of a real world situation. A real world image is created
by light that is reflected from surfaces, and that light emanates from light
sources. Virtual light sources come in many different flavours, but they
are all borrowing at least some of their properties from their real world
counterparts. At least one rudimentary light source is required in a scene,
because otherwise there is no light and no image, but a good lighting design,
in computer graphics as well as in the real world, commonly makes use of
several light sources for dramatic effect and to highlight important features.

Virtual light sources can be given properties that would be impossible to
achieve in reality, like a lack of decay with distance, a lack of shadows, a sud-
den drop-off after a certain distance, or the ability to illuminate only certain
objects. Furthermore, computer graphics light sources are just mathemati-
cal constructs and have no physical shape, so they can be placed anywhere
in a scene without obstructing the view or creating unpleasant glare in the
camera. These unworldly properties are highly useful in some situations, but
other times you need to go to great lengths to simulate the imperfections of
real light sources to create a good looking image.

Good lighting design is crucial to achieving a good result in computer
graphics, just like in reality. Even very ordinary everyday environments in
the world around us have complex lighting, and mimicking that complexity
with computer graphics lighting is a current effort in research and devel-
opment. In many computer graphics applications, the illumination is still
rather bland and disinteresting compared to reality, much because of the
fact that it is still difficult during rendering to simulate how light bounces
off various surfaces and creates indirect illumination.

The rendering problem of simulating the interactions between light and
objects is called global illumination. In a real scene, indirect light comes
from literally everywhere, and to compute how it gets where in a reasonably
accurate manner is still taxing for modern computers. The physics and
optics behind it has been known for centuries, and the math is not terribly
complicated, but there is simply too much of it to compute in reasonable
time. Even a weak indoor light source emits somewhere in the order of 1029

photons during a brief shutter time of 1 millisecond, and simulating them all
with a software algorithm is downright impossible. Fortunately, there are
short-cuts and cheats that can be employed, and with advanced rendering
software used with enough care, most effects in global illumination can now
be simulated reasonably well in off-line rendering. There are exceptions,
however, and there is still research to be done.



6 CHAPTER 1. COMPUTER GRAPHICS AT A GLANCE

Camera

The concept of a camera in computer graphics has been carried over from
film and photography, but the roots are older than that. Human eyes create
images of the outside world in much the same manner as a camera, and it
comes natural to us to interpret such images as depictions of reality, or even
as a substitute for reality. Computer graphics ”cameras” are really just a
projection from 3D to 2D, but for the storytelling it is often useful to treat
the point of view as an object in the scene, either a camera or a viewer, that
can be moved and rotated.

In computer graphics, the most common projection by far is a central
perspective projection, where rays are assumed to converge in a centre of
projection inside the camera. This is the projection created by a traditional
camera lens, or at least the kind of projection a lens tries to accomplish, but
it’s not the only choice. Furthermore, a real world camera exhibits several
imperfections like bad focus, lens distortions, colour aberrations, depth of
field, motion blur and glare. Even though these effects can all be said to
reduce the image quality, they sometimes need to be simulated to get the
image you want.

1.1.4 Animation

A lot of the computer graphics content we experience today is animated.
You could say that animation is simply the trick of changing some software
parameters over time, like position and orientation of the camera and the
objects in the scene, and rendering a sequence of images. While that would
be technically true, it doesn’t even begin to capture the array of new prob-
lems you encounter when trying to create and render animated graphics.
You need to provide a way to describe motion in the scene, and you need
to give users reasonably simple tools for creating and editing motion data.
You also need to make your renderer aware of the motion if you want to
simulate motion blur.

There are many ways to perform animation, and we won’t try to make
a list here, but the art of animation is still one of the most time consuming
processes in the business. Some animations can be generated more or less
automatically or with good assistance from advanced tools, but quite a lot
of the animation work for computer graphics is still being performed with
lots of manual labour.

Literally anything in a scene can be changed over time: the position and
orientation of objects, their shape, colour and visibility, the illumination,
the camera properties, anything. Knowing what to change, how to change
it, and timing it right requires great care and skill, and a lot of practice.



1.1. OVERVIEW 7

1.1.5 Simulation

Animations can be created and edited manually, but some kinds of motion
are better created by solving equations in a simulation. This is true for
mechanical motion like objects falling, bouncing and colliding, cloth and
hair draping over objects or blowing in the wind, and fluid and turbulent
effects like water, smoke, fire and explosions. There are lots of software tools
for simulating such effects in computer graphics. These tools have a lot in
common with simulation software for engineering applications, even though
computer graphics tools mostly take a more lax approach and compute so-
lutions that look OK but are not very accurate.

Simulations can assist even in manual animation, by generating sec-
ondary motion for attachments like hair, fur and clothes, or the suspension
of a car driving on a bumpy road. More complex assistance could involve ad-
justing the posture of an animated character to maintain balance when some
limbs are moved manually, or simply to provide hints to whether something
is physically plausible.

Mechanical simulation together with collision detection plays an impor-
tant role for interactive content like games. It’s a reasonable requirement
that a virtual world should act and react like a real environment, within
reasonable limits, and one would imagine that simple Newtonian mechan-
ics, with forces acting on rigid objects, should be easy to compute. In fact,
there’s a lot more to it. The equations are deceptively simple, but the
accuracy required in solving them with a computer turns out to be a prob-
lem. Collisions in the physical world are impulse events, with large forces
of very short duration acting on objects, and accurate mathematical models
of those contact forces are so-called ”stiff equations”, which are notoriously
hard to solve by numerical simulation. Real time solutions often take the
approach of making the world squishy, with ”contact” between objects being
represented by a gradually progressing repelling force acting at some small
distance rather than a sudden, hard impact. This can greatly improve the
accuracy and stability of the solution. Simulations for off-line rendering can
be made less squishy and more accurate, but the exact equations are still
stiff, and there is always a trade-off to be made between accuracy and speed.
To save time, even a result that is slightly wrong can be acceptable, because
it might not be visible to a human observer, and things that look slightly
wrong can often be fixed with some manual tweaks.

1.1.6 Interaction

What has been described above has concerned off-line rendering as well as
real time rendering. There are some differences, but the goals and the meth-
ods are similar for both situations. One thing that is unique to real time
rendering, however, is interaction. The very purpose of rendering content



8 CHAPTER 1. COMPUTER GRAPHICS AT A GLANCE

in real time is that the viewer should be allowed an influence over what is
shown. The interaction can be as simple as allowing the viewer to move
the camera in the world, and that in itself adds a very strong sense of pres-
ence and believability. We are inquisitive beings who like to explore our
environment on our own terms and in our own pace, whether that environ-
ment is real or virtual. A simple interactive walk-through of a virtual scene
can be a lot more engaging than a pre-rendered video sequence, even if the
pre-rendered images are of higher quality. Games and similar interactive
experiences usually add some kind of physical interaction with the environ-
ment and objects, add some simulated inhabitants to the virtual world and
create tasks for the user to solve. Even though the ”artificial intelligence”
(AI) for simulated characters in game worlds is still very far from deserv-
ing the name ”intelligence”, it is clear that games engage people a lot, and
computer games taking place in virtual 3-D worlds is a very big business.

For interactive content, it is important to maintain a high frame rate
for the rendering, at least 30 frames per second (FPS), preferably 60 FPS
if the motions are rapid. One important reason is of course the same as for
pre-rendered content: that you want to trick the human visual system into
believing that the motion is continuous and not a sequence of still images.
However, another important reason which is unique to interactive rendering
is that you need a low latency : the delay from when the user signals that they
want to take a particular action to when the action happens on the display
must not be too long. For direct user interactions where immediate response
is expected, a latency of as little as one tenth of a second becomes not only
noticeable, but clearly objectionable and annoying. For camera motion,
latency can even create physical discomfort in the form of motion sickness.
This is why computer gamers spend lots of money on their graphics cards to
get a high frame rate for their games: a high and steady frame rate makes
for a lower latency and makes the game more believable, better looking and
more fun.


