
Chapter 3

Materials

c©Stefan Gustavson 2016-2017 (stefan.gustavson@liu.se). Do not distribute.

3.1 Introduction

The shape of objects is only one part of what determines their appearance.
Another very important part are their reflection properties, like the diffuse
reflection colour, the colour and intensity of specular reflection and their re-
spective dependence on the angles for illumination and viewing. Objects can
also be transparent and have various other properties that determine how
the incident light interacts with the surface and is reflected or transmitted
toward the viewer. Taken together, the surface properties of a 3-D graph-
ics object is often called a material. Unlike real world materials, computer
graphics materials are often pure 2-D properties defined on the surface. This
is sufficient for opaque objects, which are the most common kind of objects
in most virtual scenes.

3.2 Reflection models

Early applications of computer graphics used very crude models for how light
is reflected from objects. In some circumstances, like in real time rendering
where time is short and processing power is limited, these models are still
used today. In this chapter, we will present two of these simple but useful
models. A more proper treatment of surface reflection will be saved for the
chapter on illumination and rendering.

3.2.1 The Phong model

One model that is very popular in textbooks is the Phong reflection model,
where the reflection is split into three terms: one ambient term, one diffuse
term and one specular term:

25

26 CHAPTER 3. MATERIALS

L N

R

V

θ
θ

ϕ

Figure 3.1: The vectors in the Phong reflection model

θ θ

R+L

L R

N

R

Figure 3.2: The reflection vector R

I = Iaka + Idkd(N · L) + Isks(R ·V)n (3.1)

The vector entities in Equation 3.1 are explained in Figure 3.1. L is a
vector pointing from the surface point towards the light source, V is a vector
from the point towards the viewer, and N is the surface normal. All vectors
are normalized.

The vector R is the ”reflection vector”, the direction a perfect specular
reflection would have. It can be computed from L and N by observing
that L and R are at opposite sides of N at the same angle θ, such that
L ·N = R ·N = cos θ, and their sum is parallel to N:

L + R = 2(L ·N)N
R = 2(L ·N)N− L

(3.2)

The parameters Ia, Id and Is describe the illumination intensities for the
three kinds of lighting in the model: ambient, diffuse and specular light. The

3.2. REFLECTION MODELS 27

corresponding ka, kd and ks are the surface reflectances for the respective
effects.

The parameters kd, the diffuse reflectance, is what we refer to as the
”colour” of a surface in everyday jargon. The specular reflection, ks, is also
a colour, but except for metallic surfaces, the specular reflection usually has
a neutral color (white or grey).

Figure 3.3 shows the effect of these parameters. For the 4× 4 spheres to
the left, kd is varied from almost zero to almost one from left to right, and
ks is varied from zero to one from top to bottom. The ambient reflection ka
is kept at zero, so the lower right part of the spheres, where the light does
not reach, is completely black. An ambient term would have lightened that
up a bit, but it would have washed out the contrast for all other points on
the surface as well. In general, ambient illumination should be used very
sparingly in modern applications of computer graphics, and only for real
time rendering. It looks flat, uninteresting and bad.

The rightmost four spheres in Figure 3.3 show the effect of the parameter
n. From top to bottom, n is changed from 2 to around 50. In some sense
of the word, the parameter can be thought of as ”shininess”, how polished
the surface is, but the analogy is not very good. A polished surface in
the real world does present a smaller highlight, but at the same time it
should be brighter, and that is controlled separately by the parameter ks.
Furthermore, a really shiny surface should show a mirror reflection of the
light source, whereas the Phong model assumes that all lights are ideal
points.

Realism

The Phong model is a local illumination model, where a surface has infor-
mation about light sources, but no knowledge of other surfaces in the scene.
This means that reflections from other objects cannot be modeled. Very
shiny surfaces will be severely lacking in realism because they reflect only
the light sources and not their environment. Indirect diffuse light, which
is a prominent contribution to the overall illumination in a general real life
scene, has to be lumped together in the very crude constant ambient term,
which means a scene with only diffuse surfaces will look wrong.

The diffuse reflection term in the Phong model is a pretty good model
of what actually happens when light illuminates a diffuse surface and is
reflected from it. The cosine falloff with angle that comes from the scalar
product N · L is geometrically correct, and many real world surfaces have
a diffuse reflection that behaves more or less like the Phong model. The
specular term, on the other hand, is a quite crude approximation. The
highlight appears in the right place, but that’s about it. The ambient term,
finally, is so far from reality that its use is strongly discouraged except when
there are no other options. The very notion of an ”ambient light” that comes

28 CHAPTER 3. MATERIALS

Figure 3.3: The parameters of the Phong model. Left: varying kd and ks.
Right: varying n.

3.2. REFLECTION MODELS 29

from all directions and reaches everywhere without being influenced at all
by any objects is, quite frankly, preposterous.

Excluding negative values

Equation 3.1 is a version you see in most presentations, and it is useful to get
an overview of the model, but if you want to actually implement the model
in software, you need to take several additional details into consideration.

First, the scalar product N · L will be negative if θ > π/2, but there is
no such thing as negative light, and the diffuse refection term should not be
negative. The real world interpretation of θ > π/2 is that the light comes
from behind the surface, which means that there is no light directly incident
on the surface. In these cases, the term should be set to zero, and a correct
form for the diffuse term would be:

Idkd max(N · L, 0) (3.3)

Second, similarly as for the diffuse term, the scalar product R ·V should
be replaced with 0 if it is negative, and the entire specular term should be
excluded if N ·L is negative. (These two conditions are not the same. Both
are required for all cases to be treated correctly.)

Isks max(R ·V, 0)n, when L ·N > 0
0, otherwise

(3.4)

Colour and range

For simplicity, the I and k parameters of the reflection model are often
presented as if they were scalars, but both the illumination and the reflec-
tion are in fact colours. In computer graphics, it is customary to represent
colours with RGB vectors, and a multiplication of an RGB light intensity
with an RGB reflectance factor should be performed as a component-wise
multiplication:

Idkd =

Id,RId,G
Id,B

kd,Rkd,G
kd,B

 =

Id,Rkd,RId,Gkd,G
Id,Bkd,B

 (3.5)

The k parameters represent a surface reflection and should be kept in
the range 0 ≤ k ≤ 1. Real world illumination is positive (I ≥ 0) but not
bounded upwards – you can always add more light to a scene. Traditionally,
the intensity of light sources in computer graphics has been kept in the
approximate range 0 ≤ I ≤ 1, in order not to generate pixel values that
are too large for screen presentation. Monitors are still predominantly 8-bit
and have a limited maximum intensity. In recent years, however, rendering
has shifted from using 8-bit pixel formats (integers in the range 0 to 255)

30 CHAPTER 3. MATERIALS

to floating point formats with better precision and without strong bounds.
Even real time rendering now uses a selection of dim and strong lights in
a very wide range of intensities, and an exposure control is performed after
rendering to map the pixel values to an 8-bit representation for display.

Multiple lights

The equation, even with all the details added above, still concerns only
one light source. Fortunately, it’s not difficult to extend it to multiple light
sources. Light in the real world behaves in an additive manner: a light source
can only add to the light in the scene, and its influence will be independent
on any other light sources. The Phong model, in the simplified form from
Equation 3.1, can be extended to a sum over any number of light sources.
Each light has its own position and intensity, so the parameters Id, Is, L and
by association R will be different for each term in the sum. The ambient
light, if used at all, is usually a single, separate light source that is kept
outside of the sum:

I = Iaka +

n∑
i=0

(Id,ikd(N · Li) + Is,iks(Ri ·V)n) (3.6)

Self-emission

Some objects emit light on their own, not just reflect it. Although not
formally a part of the original Phong model, it is useful and common to
add a self-emission term Ie to the model – a contribution to the intensity
which is independent on any light sources. The same visual effect could be
achieved by abusing the ambient term, but self-emission is a property of the
object and should be kept independent of the ambient light source.

I = Ie + Iaka +
n∑

i=0

(Id,ikd(N · Li) + Is,iks(Ri ·V)n) (3.7)

Light types and decay

The light sources described by the original formulation of the Phong model
are directional lights which are assumed to illuminate every object from the
same direction regardless of its position. Light sources that are far away
behave more or less in this manner, and this type of light is useful despite
its simplicity. However, we also need to be able to model lights that are
placed near the scene, or even in the scene. Instead of describing the light
as a vector, L, we can set its position pL and compute the light direction as
the vector from the current surface point p to the light: L = pL − p. This
is another common type of light, a point light.

3.2. REFLECTION MODELS 31

The length of the computed vector to a point light is the distance to the
light source, which makes it possible to compute a decay with distance. Real
world light sources have an intensity that is proportional to the inverse of
the square of the distance, I ∝ 1/|L|2. This creates a strong dependence
on the absolute distance to the light, and in computer graphics the decay
is often eliminated or reduced to a less pronounced decay with distance,
like an inverse linear decay I ∝ 1/|L| or some polynomial with both linear,
quadratic and possibly constant terms, I ∝ 1/(1 + a|L|+ b|L|2).

Another important type of light source is a spotlight, a light that illumi-
nates objects only within a cone with its apex at the light source. Such light
sources need to be described by both a position and a direction, and some
additional parameters to describe the radial decay of light within the illu-
mination cone. A more in-depth treatment of light types will be presented
in the next chapter.

This, finally, concludes our presentation of the Phong reflection model.
Most textbooks fail to mention many of the details above.

3.2.2 The Blinn-Phong model

Another, very similar reflection model is the Blinn-Phong reflection model.
It’s similar to the Phong model, and just as crude, but the specular refec-
tion is computed differently, such that for reflections at grazing angles, the
shape of the specular highlight is more similar to that of real world surfaces.
Because of this, the Blinn-Phong model is used a lot more frequently than
the original Phong model.

Blinn’s modification to Phong’s model is that instead of computing the
reflection vector R, a halfway vector H is computed which is the normalized
average of L and V, half-way between the two:

H =
L + V

|L + V|
(3.8)

And then R ·V is replaced with N ·H in the specular term:

Isks max(N ·H, 0)n, when N · L > 0
0, otherwise

(3.9)

The angle between N and H is zero in the same situation as when the
angle between R and V is zero, but the angle is different, and the exponent
n needs to be changed to give the same appearance of shininess as the Phong
model. Setting n four times as high as for the Phong model preserves the
size of highlights facing straight towards the viewer.

A visual comparison between the Phong and the Blinn-Phong model is
in Figure 3.4. In the Blinn-Phong model, the shapes of highlights at grazing
angles are a closer match to reality in most situations.

32 CHAPTER 3. MATERIALS

Figure 3.4: The Phong model (left) versus the Blinn-Phong model (right).

3.3 Texture mapping

The world around us is full of surfaces with a pattern of some sort. Natural
objects and manufactured objects alike tend to have not a single colour,
but a colour that varies across the surface. Quite obviously, this has to
be modelled by computer graphics if the synthetic scenes are to bear any
resemblance to reality. The process of putting patterns to surfaces in 3-D
graphics is called texture mapping.

3.3.1 Texture coordinates

In general terms, a texture is a function F (s, t) defined over the surface,
where s and t are texture coordinates mapping the pattern onto the surface.
Some surfaces, like parametric surfaces, have an obvious mapping that comes
at no extra cost, while other surfaces need to have a mapping assigned to
them. Texture coordinates are assigned to each vertex, and interpolated
across the polygons during rendering to have every point on the surface
correspond to a position in the texture. The texture image is then used to
determine the surface colour (or some other property) at a certain point.

Parametric mapping

A natural mapping for the sphere in Equation 2.13 would simply be the
surface parameters u and v: (s, t) = (u, v), as shown in Figure 3.5. This
latitude-longitude mapping has some flaws, because the texture becomes pro-
gressively more contracted in the s direction when t approaches its extremes
at 0 and 1. At the two poles there is even a pinching of the (s, t) plane
such that the lines t = 0 and t = 1 map to a single point. Note that the
polygons around the poles in this sphere are triangles, not quadrilaterals,
and the mapping doesn’t even cover every pixel in the image. Nevertheless,
the latitude-longitude mapping is useful as long as the texture images are
created to account for the varying area scale.

3.3. TEXTURE MAPPING 33

Figure 3.5: A texture mapped sphere and its texture coordinate map.

Explicit mapping

In many cases, no obvious simple mapping can be found, and the (s,t) map-
ping has to be explicitly designed and specified as per-vertex texture coor-
dinates. Depending on the situation, the mapping can be performed more
or less automatically or manually, or by using a combination of automated
tools and manual tweaks. Manual mapping requires considerable effort, but
such mappings can be of much higher quality. An example of a manual
mapping for a model with a low polygon count is shown in Figure 3.6. This
particular mapping was carefully designed to make the best possible use
of the available pixels, and extra care was taken to make it easy to draw
and edit the texture image using ordinary image editing tools. More pixels
were spent on the face, because that area contains more important visual
features. Mirror symmetry was also used to save texture space: the left and
right arms and legs map to the same area in the texture image.

Creating a good texture coordinate map is not an easy task, but it is
often required. 3-D models which lack texture coordinates are not terribly
useful. A lot of effort in 3-D modeling is spent on texture mapping, both by
artists and by engineers, and for good reason.

3.3.2 Mapped properties

Any surface property may be varied by a texture, not only its colour. Clever
and well considered use of texture maps is a very useful tool in computer
graphics.

Diffuse and specular colour

Taking the Phong reflection model as an example, the surface colour is
kd, but there is also a specular colour ks which could be varied. In reality,
varying levels of specular reflection could be due to wet spots on the surface,
or areas where the surface is worn or dirty. If a texture map is used to
tell where there is land and water on a planet, like in Figure 3.5, the water

34 CHAPTER 3. MATERIALS

Figure 3.6: A texture mapped character and its texture coordinate maps.

would need to be shiny and the dry land would need to be matte. A suitable
specular intensity map would be black where there is land, and white where
there is water.

Opacity

A surface property that hasn’t been described above is opacity, which is
the opposite of transparency. An opaque surface (opacity = 1) blocks light
and hides anything behind it, but a surface with opacity less than 1 lets
some light from the objects behind it show through. A surface with zero
opacity is completely transparent and doesn’t show up at all in a rendering.
A completely invisible object is not very useful, but things get considerably
more interesting if the surface opacity is modulated by a texture map, such
that only some parts of the surface are hidden. An opacity map on a simple
rectangle can be used to model a thin, flat object with an arbitrary outline
and with holes in it, like a leaf, a sheet of torn paper or a piece of cloth. This
comes at a very low cost compared to what it would have taken to model
the same level of detail using polygons.

Surface normal

A very prominent property of a surface is its normal direction. We are
already playing tricks with the normal by interpolating it across polygons
to make faceted mesh objects appear smooth, and there is nothing to stop
us from manipulating the normal even further and use a texture map to
create fake bumps and crinkles on the surface. This is called bump mapping.
It was invented by Jim Blinn in 1978 and has remained an important tool in
computer graphics ever since. A bump map is a very efficient way of creating
the appearance of geometric detail without actually making the model more
complicated. An extension of the method is displacement mapping, where a

3.3. TEXTURE MAPPING 35

texture map is used to actually move the surface and make it truly rough,
but that requires a lot more effort during rendering.

In both bump mapping and displacement mapping, the texture map de-
scribes the variation in surface height, and the new normal is calculated
by computing the in-plane differentials of the map. A modern variation on
bump mapping is normal mapping. Normal mapping instead stores the nor-
mal direction for each point on the surface directly as a 3-element vector,
which saves some effort during rendering. A bump map is a single channel
image which shows a sort of topographical height map of the surface rough-
ness, and that concept is easy to understand and quite straightforward to
create for an artist. For real time rendering, though, normal maps are often
preferred because they involve less computations at render time. Normal
maps can be computed from bump maps in an off-line preprocessing step.

Reflections

An application of texture mapping which is not strictly related to a surface
property is reflection mapping, sometimes called environment mapping. A
local reflection model has no knowledge of other objects around the point
that is being rendered, but reflective surfaces like polished metal need to
show a mirror image of their environment. A surprisingly successful way to
fake this is to use a texture map of the environment. The way it is done
is to reflect the view vector in the surface in the same manner as the light
vector is reflected in the Phong model, and use the reflected view direction
as a lookup index into a 360-degree panorama of the environment. Common
mappings that cover all directions are latitude-longitude spherical maps and
cube maps, where six square images map to the six faces of a cube. The
reflection map can be based on a photo or computed as a rendering with
the camera at the center of the reflection mapped object. If the scene is
moving, the reflection map can even be recomputed for each frame to match
a real reflection quite closely. However, it is surprisingly easy to get away
with using a static reflection map for an animated scene. The map of the
environment doesn’t even have to be very similar to the actual scene. It
is usually enough if the reflection has more or less the same colours and
contrast and doesn’t show, say, a reflection of trees against a clear blue sky
when you are indoors.

3.3.3 Image-based textures

The texture function F (s, t) must of course be specified somehow. The most
common representation is image-based textures, using an ordinary sampled
digital image with pixels. RGB pixels that are meant to represent colour
can be used also for normal maps. Most image file formats can’t store
negative pixel values, but instead of directly storing the three components

36 CHAPTER 3. MATERIALS

(Nx, Ny, Nz) of a normal, you can store (Nx + 1, Ny + 1, Nz + 1)/2. Many
image file formats have an RGBA variant with a fourth ”alpha” component,
which is very suitable for storing an opacity map or a specular map, but
such maps can also be stored as separate grey-scale images. For real time
rendering with modern shader-capable hardware, it is common practice to
save texture bandwidth by storing several different mapped properties in
different colour channels in an RGB or RGBA image.

Care should be taken when using compressed image file formats to store
textures that are not RGB images. JPEG and other destructive compression
algorithms can give unpredictable and undesirable results. Non-destructive
compression like PNG is to be preferred.

Image-based textures are digital images, and share both their advantages
and disadvantages. The advantages are that they are easy to create and can
be edited with commonly available software, and they are completely general
in that they can describe any imaginable pattern. Disadvantages are that
they have a limited resolution, and they require memory for their storage.
Memory is cheap and abundant these days, even though it’s not free and
infinite. The limited resolution, however, is a serious issue, in particular for
real time applications where you don’t have complete control over where the
camera is going. Close-up views of textured surfaces in games tend to look
blurry or pixelated, which breaks immersion and looks bad.

Naively, you might think you only need to reconstruct the image value at
one point for a texture lookup. The point (s, t) is typically not at the exact
center of a pixel, or texel as they are often called, so some interpolation
between neighboring pixels is required to reconstruct the value at (s, t).
However, the problem is quite a bit more complicated than that. Because
objects in a 3-D scene can be viewed from any angle and any distance, one
pixel in the rendered image might stretch across several texels in the texture
image, and the square boundary of a screen pixel can become an elongated
and distorted shape when projected to the texel space. This makes proper
texture sampling a very difficult problem, in fact a combination of problems,
and we won’t go into all the details here.

One mechanism in texture sampling that is definitely worth mentioning,
though, is mipmapping. (The term MIP was originally short for a Latin
phrase, multum in parvo, meaning ”several in a small place”, but nobody
seems to care about that. The term ”mipmap” is now a name rather than an
acronym.) Mipmapping is a good solution to the very common problem of
texture minification: when a textured surface is viewed from afar, the texels
are considerably smaller than a screen pixel, and a correct determination of
the pixel value would require taking an average over some area in the texture.
If this is not done properly, the texture will look bad and ”sparkle” in
animations because of a strong undersampling : some texels will be skipped,
and which ones are skipped will depend on the view in an unpredictable
manner. A mipmap contains pre-filtered versions of a texture image, where

3.3. TEXTURE MAPPING 37

you store not only the original image, but also a sequence of successively
smaller versions of it. The simplest kind of mipmap contains the original
image and images of half that size, one quarter of it, and so on. The smallest
image is a single pixel. The entire stack of images, sometimes referred to as
an image pyramid, requires only 4/3 more storage than the highest resolution
image alone, and yields a significant increase in quality. When a mipmap
is sampled during rendering, you pick an image in the stack with a texel
resolution that most closely matches the pixel resolution of the image. This
gets rid of a lot of of the objectionable artifacts from undersampling.

3.3.4 Procedural textures

The texture function F (s, t) doesn’t have to be sampled and stored as a
digital, pixel-based image. In some cases, it is reasonably convenient to
instead specify it as a mathematical function that is computed by a short
program snippet every time you need it. This method is called procedural
texturing, and it has advantages as well as disadvantages.

In procedural texturing, a value for F (s, t) is computed for every pixel
for every frame, and thrown away after use. This might seem wasteful, and
sometimes it is, but there are quite a few circumstances where you need to
conserve memory bandwidth, so storing the texture image in memory is not
always the best idea. In today’s computers, the memory bus is slow com-
pared to the internal clock frequency of the CPU or GPU, and the massive
parallelism in modern GPUs makes it a difficult task to handle memory ac-
cesses from many processing elements at once. Procedural patterns, on the
other hand, are described by short programs and require very little data, so
spending some work on computing the pattern every time you need it can
sometimes be the smarter option.

One clear advantage of procedural textures is that their resolution is not
limited: they are resolution independent. They can be computed at any
required resolution, even in extreme close-ups and distant views.

Another advantage of procedural patterns is that they can be changed
at a moment’s notice by changing a parameter to a function. Changing an
image based texture requires opening the image in an image editing program,
editing it and saving it, a process that could take a lot of time and effort
even for small changes.

A less obvious feature of procedural textures is that they don’t desper-
ately need a 2-D mapping. A mathematical function may be defined over
a 3-D domain. By specifying the texture function as F (s, t, p) instead if
F (s, t), 3-D object coordinates can sometimes be used as texture coordi-
nates. For objects of irregular shape, this can be a strong advantage, and
it corresponds well to a real world situation where an object is made from
a material with a patterned internal structure, like wood or stone. Storing
3-D functions as sampled data is not impossible, but it requires a lot of

38 CHAPTER 3. MATERIALS

data, and the resolution will be limited. With some care, you can even de-
sign procedural patterns that are 3-D functions that vary over time, making
them 4-D functions. Storing 4-D functions as sampled data is prohibitively
expensive for most purposes, but for procedural patterns, it’s just a matter
of how you define your texture function.

Creating procedural textures can be difficult, though. Instead of editing
a digital image, a very common process known to many people, you need to
create a small program that computes the pattern, and programmers with
a proper understanding of texture patterns are hard to find, certainly a lot
harder than digital image editing artists. Furthermore, not every pattern
is suitable for a procedural description. Finding a function that creates a
pattern is never easy, but it might be particularly hard or even impossible
for some patterns. A digital image is very general and can describe any
pattern, while only some patterns are suitable for procedural texturing.

Finally, the computational workload of a procedural texture can some-
times be prohibitive. A memory access has a fixed, low complexity, while
a procedural pattern can take a lot of work to compute – possibly more
work the closer you get to the surface. This makes it difficult to motivate
procedural texturing for real time applications. It’s not impossible, though.
Modern GPU development has made it perfectly possible to consider us-
ing some of the GPU power for procedural texturing. You just need to be
aware that it takes extra effort, effort that could be spent on other kinds of
processing for the scene.

3.3.5 Composite textures

Most modern 3-D graphics packages have an entire separate section ded-
icated to the creation and editing of materials for surfaces. Such editors
include options for assigning different reflection models to surfaces and to
assign texture maps to various properties of the surface, but they also con-
tain a layer-based editing framework to create texture maps that are built
from several smaller parts, much like layers in an image editing program. It
is not uncommon for a material in 3D graphics to contain dozens of indi-
vidual texture maps that are combined in different ways to create the final
surface pattern. This is true also for real time rendering. So-called multi-
texturing has long been the norm for real time rendering, and for a typical
3-D graphics scene, several textures were used to render one output pixel.

In a composite texture, it is of course perfectly possible to use both
procedural maps and image based maps in any combination. Using both
to their respective advantages and picking the right tool for the job is an
important consideration when creating materials.

