
Chapter 2

Objects

c©Stefan Gustavson 2016-2017 (stefan.gustavson@liu.se). Do not distribute.

2.1 Introduction

There are several ways to represent objects in a computer graphics scene.
The most common choice is to represent only the surface, and to represent
it with a polygon mesh, but there are other approaches, each with their own
advantages and disadvantages. Even a polygon mesh may be represented in
different ways depending on the application.

2.2 Polygon meshes

A polygon mesh is a simple, yet flexible way of representing a surface. The
heart of the representation is a list of vertex coordinates for a set of points
in space, and a list of polygons that connect the points. The polygons
are mostly triangles. Polygons with more than three corners can be useful
during interactive modelling, but they are almost always split into triangles
before rendering.

During transformation and rendering, it is useful to be able to tell the
inside from the outside of a polygon, and for that reason, you usually stick
to a consistent winding order for the vertices that make up a polygon. The
most common choice is to traverse the vertices in a counter-clockwise order
seen from the outside of the object. If after transformation to camera co-
ordinates the vertices for a polygon are traversed in the opposite direction,
that polygon is viewed from the back. This is used in hardware rendering
to perform back face culling, an operation that can eliminate half of the
polygons from further processing and save a considerable amount of work
for the renderer. This works for opaque objects, where only the outside is
visible. Transparent objects need to be handled differently, but back face
culling saves a lot of work where it can be used.

9

10 CHAPTER 2. OBJECTS

In addition to the vertex coordinates and the triangle list, it is useful
to store the surface normals at each vertex. To model smoothly curved
surfaces, the vertex normal may differ from the true surface normal of the
triangle, and it may be different for adjacent triangles sharing the same
vertex.

If all you store is a vertex list, a list of normals and a triangle list,
what you get is called a triangle soup, a data structure that is sufficient for
rendering but contains too little information for interactive modelling and
progressive level of detail.

To perform modelling operations on a mesh that change its structure,
like subdivision or simplification, you need information about adjacency in
the mesh, to find the answer to questions like:

• Which faces are adjacent to this face?

• Which faces are using this vertex?

• Which edges connect to this vertex?

• Which faces are to either side of this edge?

• Which edges border this face?

In a polygon soup, you would need to search the entire list of faces to
answer that kind of questions. To avoid lengthy searches through every
element for every operation you perform, some sort of indexing or linking of
neighbouring elements is required. A very useful and commonly used data
structure for this situation is the half-edge mesh. The good ideas behind it
are far from obvious, and it wasn’t until 1998 that it was first described in
scientific literature.

The main idea is that you split each edge into two directed edges, one to
either side, to make the direction of the edge consistent with the winding
order of the polygon on the corresponding side of the edge. The main data
structure is the list of half-edges, where for each edge you store pointers to
the following information:

• The face it belongs to

• The vertex where it ends

• The next half-edge in the polygon

• The half-edge on the other side of the edge

There are two other lists as well: a list of faces and a list of vertices. For
each vertex you store its coordinates, its normal and any other per-vertex
data you need, plus a pointer to any one of the half-edges that emanate from

2.2. POLYGON MESHES 11

Figure 2.1: The half-edge mesh representation. Each half-edge (highlighted
in red in the figure) references the vertex it points to, its opposing half-edge
and the next half-edge around the winding order of the polygon (highlighted
in blue).

12 CHAPTER 2. OBJECTS

it. For each face, you store only a pointer to any one of the half-edges that
border it.

Some variations of the half-edge representation store more data for each
edge or for each face to speed up some operations, but the basic data struc-
ture described above contains all the information required to both edit and
render the mesh in a reasonably efficient manner.

2.3 Subdivision surfaces

Using a structured polygon mesh, such as the half-edge mesh, it is relatively
easy to subdivide either the entire mesh or some selection of polygons into
several smaller polygons.

Global subdivision schemes, where all polygons in the mesh are subdi-
vided, can be used to create smooth looking models even from relatively
jagged, low resolution meshes. This method has seen a lot of use in recent
years, because it provides a way of creating objects with smooth, curved sur-
faces while keeping the ease of use that comes from having a polygon mesh
model that is both easy to understand and straightforward to edit. One
such subdivision method is the Catmull-Clark method. It deserves special
mention because it was the first method that was proposed, the first method
that was widely adopted in the graphics industry, and also because it is still
in common use. Most modern applications use various improvements and
variations of the method to allow for explicit creases and folds and to behave
somewhat differently for some special cases, but the differences are small.
Some entirely different subdivision methods exist as well, but they are all
variations on the same theme: you start with a polygon mesh and create a
subdivided mesh with more vertices and more polygons that are computed
from the coarser mesh, and the process can be repeated a number of times
to create a surface that looks very smooth indeed.

Catmull-Clark subdivision is performed as follows:

1. For each face, add a new face vertex at a position which is the average
of all original n vertices for the face.

2. For each edge, add an edge vertex at the average position of the two
neighboring face vertices and the two original endpoints of the edge.

3. For each original vertex P , take the average F of all n recently cre-
ated face vertices for faces touching P , and take the average R of
all n edge midpoints for edges touching P , where each edge midpoint
is the average of its two endpoint vertices. (Note that this is differ-
ent from the edge vertex.) Move each original vertex to the point
(F + 2R+ (n− 3)P)/n. This is a weighted average of the positions of
P , R and F with the respective weights (n− 3)/n, 2/n and 1/n.

2.3. SUBDIVISION SURFACES 13

Figure 2.2: Catmull-Clark subdivision. Original mesh: white vertices, solid
lines. New face vertices: red. New edge vertices: green. Moved vertices:
gray. Subdivision of the center face: dashed lines.

4. Create new edges from each newly created face vertex to each of the
newly created edge vertices for edges surrounding the face.

5. Define new faces as enclosed by the new edges.

The subdivision looks fairly complex when presented like this, but its
principle is simple: Create one new vertex in the center of each face, create
one new vertex for each edge, move the original vertices a bit and create n
new faces for each original face with n vertices. An overview of the process
is presented in Figure 2.2.

Because of how Catmull-Clark subdivision is performed, the input mesh
can contain arbitrary polygons, but the subdivided mesh will consist only
of quadrilaterals, which will typically not be planar. The new mesh will be
smoother than the old mesh, because the averaging of neighboring points
to create each new point will reduce rapid local variations and round off
sharp corners. The smoothing effect is very strong in the first few itera-
tions, but then there are no sharp edges left, and the surface approaches its
limit surface, an ideal smooth surface which for the Catmull-Clark subdi-
vision scheme is well defined and has a closed form parametric expression.

14 CHAPTER 2. OBJECTS

Figure 2.3: From left to right: original mesh, one, two and three iterations
of Catmull-Clark subdivision.

Evaluating it directly requires more work than performing a few steps of
successive subdivision until the surface looks smooth enough, but merely
knowing that there is a well defined limit surface is useful. The limit surface
is continuous everywhere, and has a continuous derivative (”is smooth”) ev-
erywhere, except at vertices where more or less than four faces meet. These
points are called extraordinary points.

Creating a coarse, ”boxy” model and relying on automatic subdivision
to smooth out the unwanted sharp edges is sometimes called box modelling.
Figure 2.3 shows an example of Catmull-Clark subdivision applied in several
iterations to a coarse polygon model.

Selective subdivision schemes, where only some polygons are subdivided
in each step, can be used as an efficient modelling tool, where the user
starts out with a coarse mesh to model the overall structure of the object
and refines it to model successively finer detail where needed. The process
can be organized to maintain the previous mesh in the successive steps of
refinement, and make it possible to backtrack to a more coarse model. This
is a convenient way of creating models with a built-in dynamic level of detail
(LOD) for real time rendering. This modelling method is commonly referred
to as hierarchical subdivision surfaces, or HSDS for short.

2.4 Parametric curves

Curves are one-dimensional shapes, paths through space, which is not the
same kind of objects as polygon meshes which describe surfaces in space.
However, curves are very important for 2D graphics, where they are used
to describe both lines and the outline of closed shapes, and they are heavily
used as a tool in 3D graphics to describe the profile of an extruded object
or the outline of a lathed object, and perhaps most importantly to specify
paths for animation. Parametric curves are also quite a lot easier to ex-
plain and to understand than parametric surfaces, and once you understand
them, parametric surfaces are really only an extension. Therefore, we be-
gin by describing parametric curves, more specifically an important class of

2.4. PARAMETRIC CURVES 15

parametric curves called Béziér curves.

A parametric curve in two dimensions is defined as a vector-valued func-
tion of one parameter:

p(u) =

[
x(u)
y(u)

]
(2.1)

In the 3D case, the vector has a third component z(u). The principle is
the same, and the description below is valid for both the 2D case and the
3D case.

From calculus, we know that a reasonably well-behaved (infinitely dif-
ferentiable) function can be approximated by polynomials. Polynomials are
easy to compute and has simple derivatives. We choose to create paramet-
ric curves where the components, x(u) etc., are polynomials in u. We also
choose to restrict the degree of those polynomials to 3. If complicated curves
need to be represented, we split them up into several segments and represent
each segment with a third degree curve. This is not an obvious choice, but
long experience has shown that it is a good one. Third degree curves, cubic
curves, are used a lot in computer graphics.

For easy interactive drawing, we want to specify the starting point and
the endpoint of the curve, like we would for a straight line. We also want
some degree of control over the curvature, and we can get that by specifying
the tangent of the curve. For a third degree curve, specifying the endpoints
and the tangent at both endpoints gives us enough constraints to compute
the equation for the curve. This also gives the user reasonably close and
intuitive control over the curve segment, and provides enough flexibility.

Béziér curves are far from an obvious idea. Skipping some of the moti-
vation for exactly why we do it like this, a Béziér curve is defined by four
control points, p0 through p3, we assume that 0 ≤ u ≤ 1, and the constraints
for the curve are:

p(0) = p0

p(1) = p3

p′(0) = 3(p1 − p0)
p′(1) = 3(p3 − p2)

(2.2)

In words, this means that the curve starts at p0 for u = 0, ends at p3

for u = 1, has a tangent 3 times the vector from p0 to p1 at u = 0, and a
tangent 3 times the vector from p2 to p3 at u = 1. Asserting a third degree
polynomial for the function and taking its derivative with respect to u to
compute the tangent, we get:

p(u) = Au3 + Bu2 + Cu+ D
p′(u) = 3Au2 + 2Bu+ C

(2.3)

Putting the constraints into this yields the equation system:

16 CHAPTER 2. OBJECTS

p(0) = D = p0

p(1) = A + B + C + D = p3

p′(0) = C = 3(p1 − p0)
p′(1) = 3A + 2B + C = 3(p3 − p2)

(2.4)

Solving the equation system gives us:

A = p0 + 3p1 − 3p2 + p3

B = 3p0 − 6p1 + 3p2

C = −3p0 + 3p1

D = p0

(2.5)

Putting A, B, C and D into the original equation gives us an equation
for the curve segment:

p(u) = (−p0+3p1−3p2+p3)u
3+(3p0−6p1+3p2)u

2+(−3p0+3p1)u+p0

(2.6)

Rearranging by collecting terms for each of the control points pi yields:

p(u) = (−u3+3u2−3u+1)p0+(3u3−6u2+3u)p1+(−3u3+3u2)p2+(u3)p3

(2.7)

And, finally, re-writing the polynomials gives us the form that is usually
used when presenting Béziér curves:

p(u) = (1− u)3p0 + 3u(1− u)2p1 + 3u2(1− u)p2 + (u3)p3 (2.8)

This can be expressed a lot more compactly as a sum with symbolic
names for the polynomials:

p(u) =

3∑
i=0

Bi(u)pi (2.9)

where

B0(u) = (1− u)3

B1(u) = 3u(1− u)2

B2(u) = 3u2(1− u)
B3(u) = u3

(2.10)

In this form, the equation can be interpreted as a weighted sum of the
control points, with weights being determined by the interpolating functions
Bi(u). Figure 2.4 shows these functions on the interval 0 ≤ u ≤ 1. Points
p0 and p3 are the only ones that have non-zero weights at the endpoints

2.4. PARAMETRIC CURVES 17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B0(u)

B1(u) B2(u)

B3(u)

Figure 2.4: Béziér polynomials plotted over the interval 0 ≤ u ≤ 1.

of the curve, and the points p1 and p2 influence the curve most strongly
around the middle of the interval.

Looking at the polynomials, we can see that the sum of all weights is
exactly 1 everywhere:

3∑
i=0

Bi(u) = 1 (2.11)

Furthermore, all weights are positive in the interval 0 ≤ u ≤ 1. This
means that the point p(u) is always in the convex hull of the control points.
The convex hull in 2D is the convex quadrilateral that can be drawn with
the control points as corners. In 3D, the convex hull is a tetrahedron with
the control points as vertices. This makes it possible to create a very simple
test during rendering for whether a Béziér curve segment is visible or not,
and if it might extend across the border of the rendering window: if the
convex hull is entirely inside the window, the entire curve is visible, and if
the convex hull is entirely outside the window, the curve is not visible. If the
convex hull is partially inside the window, the curve is potentially visible and
might need clipping. This convex hull property of a Béziér curve segment is
very useful, and it is the main reason why we chose the seemingly arbitrary
factor 3 when we set the constraints for the derivatives at each endpoint in
Equation 2.2.

18 CHAPTER 2. OBJECTS

2.5 Parametric surfaces

Parametric surfaces are a very wide class of objects. Their fundamental
advantage is that they are capable of describing smoothly curved surfaces
without approximating them with polygons. By describing, say, a sphere as
a set of polygons, you need to decide how many vertices you should create
to approximate the smooth surface, but the right choice for the number of
vertices depends on many factors, for example the resolution of the output
image, how close the camera is to the object, how well lit the sphere is,
what kind of material it has, and how much effort you can afford to spend
on rendering the sphere. You often need a variable resolution for the mesh
model. Parametric surfaces solve this problem by describing not a fixed
set of vertices, but a resolution-independent equation for all points on the
surface. The partitioning into polygons, the tessellation of the surface, can
be left for later, and the same object description can be used to create both
high and low resolution polygon meshes.

The surface coordinates for a sphere in parametric form could look like
this:

p(ϕ, θ) =

R cosϕ sin θ
R sinϕ sin θ
R cos θ

+ p0 (2.12)

There are two different kinds of parameters in this equation. The creation
parameters or the attributes are the sphere’s radius R and center p0, and
they determine the size and position of the sphere. The surface parameters
are ϕ and θ, and by varying those in the ranges 0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ π
you trace out every point on the surface. Usually, you want parameters in
the range 0 to 1 rather than having irrational numbers like π in your loop
limits, so a better parametric equation for a sphere would be:

p(u, v) =

R cos(2πu) sin(πv)
R sin(2πu) sin(πv)

R cos(πv)

+ p0 (2.13)

Many useful objects can be described in exact form with reasonably
simple equations like this. Spheres, cylinders and a few other simple shapes
are important because they are used a lot in manufacturing, and they are
often best described in parametric form.

By an extension to the idea behind parametric curves, we can describe
a surface with the same kind of interpolating polynomials. A Béziér patch
can be described by the equation:

p(u, v) =

3∑
i=0

3∑
j=0

Bi(u)Bj(v)pij (2.14)

2.6. SWEPT SURFACES 19

where the polynomials Bi and Bj are the same polynomials as for the
Béziér curves, and the set of 4 × 4 control points pij form a control mesh.
The interpretation of the control points is similar to that for curves, but
not quite as straightforward, and a Béziér patch is not quite as easy to use
as a modelling tool as a Béziér curve is. Other kinds of parametric surface
patches exist which have a different interpretation of their control points and
which are easier to manipulate during modelling. The most popular variant
are so-called NURBS surfaces. NURBS is short for non-uniform rational
B-spline. It would take us a bit too far into theory to explain them in full
here, but they are fundamentally quite similar to Béziér surfaces. With an
understanding of Béziér curves and Béziér patches it is not a lot of work to
learn more about NURBS patches, as well as any other kind of parametric
curve or surface based on control points and interpolating functions.

2.6 Swept surfaces

Real world objects which are manufactured by extrusion or lathe can be
described by a 2-D profile which is then swept along a line or in a circle
around a rotation axis. A common name for this kind of surfaces, both in
mathematics and graphics, is swept surfaces. The profile is usually specified
as a parametric curve. When generating polygon mesh objects with this
method, the number of steps along each of the directions (along the profile
and along the sweep path) can be specified independently to control the
detail and complexity of the generated mesh. The sweep path can also be
an arbitrary curve, not just a line or a circle, and the profile can change
gradually across the sweep. Two swept surfaces are shown in Figure 2.5:
the base of the column is a surface of revolution (a profile swept along a
circle), and the column is a linear extrusion (a profile swept along a straight
line).

2.7 Implicit surfaces

The object representations presented above have all been explicit, in the
sense that they store or compute the coordinates for points on the surface.
A common way of representing shapes in mathematics is implicit equations,
which work the other way around: an equation tells whether a certain point
is on the surface, but there is no direct and obvious way of generating only
those points that are on the surface. Continuing the example with a sphere,
for which the parametric equation was given in Equation 2.13, an implicit
equation for the same sphere would be:

(x− x0)2 + (y − y0)2 + (z − z0)2 = R2 (2.15)

20 CHAPTER 2. OBJECTS

Figure 2.5: Two swept surfaces. The profiles are indicated by the black
stripes.

Another, more common formulation is to define a function F (x, y, z) that
is zero on the surface:

F (x, y, z) = (x− x0)2 + (y − y0)2 + (z − z0)2 −R2 = 0 (2.16)

This formulation has the advantage that the sign of the function indicates
whether a point is inside or outside the surface. A negative sign for F means
that the point (x, y, z) is inside the sphere, and a positive sign means that the
point is outside. The gradient of the function points away from the object,
and the gradient at the surface is parallel to the surface normal. The value
of the function can be used to compute the distance to the surface, which
can be a very useful piece of information for computations in simulation and
rendering. The implicit form also makes it considerably easier to compute
the intersection between a ray and the surface, a computation which is
essential to the various rendering methods based on ray tracing.

Some rendering methods, like ray tracing, are very well suited to render-
ing implicit surfaces directly without subdividing them into polygon meshes.
For real time rendering, an implicit equation is not a convenient representa-
tion of a surface, but it can be very useful as a complement where available,
for example to perform collision checks for animation.

A special case of implicit surfaces is called metaballs or metaparticles.
Their implicit function F is defined as a sum of functions that depend on
the distance from the current point p to a set of points or particles, pi:

F (p) =
∑
i

D(|p− pi|)− T (2.17)

2.8. CONSTRUCTIVE SOLID GEOMETRY 21

0 1
0

0.5

1

Figure 2.6: A suitable distance function for a metaballs object

where T is some threshold value and D is some distance function that
typically starts out at 1, has has a small region of linear decline near the
origin and drops to zero beyond a certain distance, like the function in
Figure 2.6.

The metaball surface is defined as the set of points where F = 0, like
other implicit surfaces. The difference is that F is computed by a sum of
several smaller contributions from nearby particles, making it possible to
model objects of very irregular shape. Metaball surfaces can be used to
represent water and other liquids, which are often simulated as particles of
relatively large size rather than at a microscopic level. The ”correct” level
for a water simulation would be to simulate individual water molecules, but
that is way too much work, enough to be out of reach for the foreseeable
future. Water simulations on today’s computers may involve millions, even
billions of particles, but in real life, even a single glass of water contains
around 1025 molecules.

2.8 Constructive Solid Geometry

The term Constructive Solid Geometry, or CSG for short, refers to a kind
of compound objects which are defined as set operations between other ob-
jects. The set operations are union, difference and intersection, and their
meanings can be explained by a simple diagram, see Figure 2.7. The union
of two objects is the volume covered by either of the objects, Their intersec-
tion is the volume covered by both of the objects, and the subtraction, one
object minus another, is the volume covered by the first object that is also
not covered by the second object. All these operations require that both

22 CHAPTER 2. OBJECTS

A B

A minus BIntersection of A and B

Union of A and B

Figure 2.7: Set operations for CSG

objects have a closed surface, such that they have a well defined ”inside”
and ”outside”.

CSG operations are very useful for replicating many operations used in
the manufacture of real world objects, like cutting, drilling and welding.
CSG modeling is often used in computer aided design (CAD), but it can be
a useful tool in all kinds of 3-D modeling.

This kind of modeling is particularly simple to implement for implicit
objects. Determining whether a point is inside the compound object is just a
matter of checking for all its components and using simple logic, e.g. ”inside
the union of A and B” is equivalent to ”inside A or inside B”.

Most 3-D modeling software tools can perform CSG operations also be-
tween polygon meshes. The algorithms for such operations are quite tricky
to figure out and to implement, because you need to compute lots of inter-
section lines between polygons, cut the models up to create new vertices and
new edges along the intersections, and make sure the new compound object
is assembled correctly.

2.9 Volumetric objects

Implicit surfaces cross the boundary to a full-fledged volumetric representa-
tion of objects, seeing how they use a function F that is defined for all points
in space, not only points on the surface. Some objects do not have a clearly
defined surface, like smoke, fog and fire, and some that do have a surface are
transparent with a varying density on the inside. To represent such objects
well, we need a volumetric function F (x, y, z). Sometimes you can find a
mathematical function that does the job, and that is a viable solution for
objects with a simple internal structure or some random-looking things like
clouds and fire. However, there are many cases where such functions may be
unreasonably hard or even impossible to find. Therefore, volumetric data is
often stored as sampled volumes, similarly to digital images. The concept

2.9. VOLUMETRIC OBJECTS 23

of a pixel which represents an intensity sample in 2D image space is carried
over to voxels which typically represent a density sample in 3D space.

Sampled density volumes are routinely collected in the field of medical
imaging, by means of X-ray tomographs and magnetic resonance cameras.
Visualizing such density volumes is one important application of computer
graphics, and how to do it well is a very active research topic. The amount
of data represented by a sampled voxel volume is a problem even for mod-
ern computers. While an image of resolution 1000 × 1000 pixels requires
only a few megabytes of storage, a volume of resolution 1000× 1000× 1000
voxels require several gigabytes. One single volume pretty much fills all the
available memory in a modern computer, and handling several gigabytes of
data efficiently for real time rendering is tricky. Storing, transmitting and
archiving lots of data volumes also present real problems for the current
generation of computers.

24 CHAPTER 2. OBJECTS

