
Hardware accelerated graphics
Stefan Gustavson (stegu@itn.liu.se) 2015-04-10
Fifteen years ago, hardware accelerated 3D graphics was an expensive, specialized niche for 
professional applications, but nowadays it is cheap and ubiquitous. The primary market reason for 
this development is 3D gaming, but graphics accelerators are very useful also for professional 
applications, and they present an advantage even for 2D graphics and video. The graphics 
accelerator is now often the most complex chip in a computer, and it is commonly referred to as a 
”graphics processing unit”, or GPU.

Because there is a lot of power to tap into by using a GPU to its full capacity, it is useful to know 
the general architecture of the pipeline. This makes it more apparent what can be done and, perhaps 
even more importantly, what cannot be done easily within the constraints of the current hardware 
designs. Good graphics programming requires at least some understanding of what goes on behind 
the scenes in a modern GPU. Hopefully, this overview will shed some light on that without going 
into too much detail.

The graphics pipeline
The current generation of GPUs have an architecture that was introduced already in the late 1980's 
by the company Silicon Graphics (now SGI, no longer doing 3D graphics). While the architecture is 
old and basically mimics software rendering methods from about 25 years ago, it has scaled well 
and still seems to have more to offer. The figure below presents the architecture at an overview 
level. The rest of this document is a detailed explanation of this figure.

The primary primitive for hardware accelerated graphics is triangles. While recent hardware 
developments have made it possible to use other representations like volumes, implicit surfaces and 
parametric surfaces, triangles are still by far the most common representation. Triangle mesh 
models are typically characterized by vertex coordinates, normal vectors and texture coordinates. 
4x4 matrices are used to transform the homogeneous vertex coordinates from object space to screen 
space and to perform a perspective projection. Materials and lights can be specified for simulation 
of illumination and reflection, and texture images play a very important role in rendering visually 
complex 3D graphics while keeping the geometry of the scene reasonably simple.

transform clipping triangle
setup

rasterization

RGBA (1)

RGBA (2)

Z buffertexture
cache

texture
memory

vertices
normals

texcoords

matrices

materials
lights

texture
images

z?

object
space

screen
space clip

space
spans pixels

Double buffer,
depth (z) buffer
and texture images
in the same local memory

The GPU Graphics Pipeline

programmable by ”shaders”



Transformation

The vertex coordinates and normals (and potentially even the texture coordinates) are transformed 
by multiplication with one or several 4x4 matrices. For the vertex positions, the transformation is 
followed by a division by the fourth homogeneous coordinate to achieve a perspective projection.
Clipping

After the transformation to screen space, individual triangles can be inside or outside the view, and 
may possibly cross the screen boundaries. This is resolved by clipping the triangles to remove the 
parts that extend beyond the screen. Clipping generates some non-triangular polygons that are once 
again split into triangles for the final rendering steps.
Triangle setup

As a preparation for the final step, triangles are split into one pixel wide line segments, referred to 
as spans. The coordinates for the two endpoints of each span are interpolated between the triangle 
vertices. Other per-vertex data such as normals and texture coordinates is interpolated as well.
Rasterization

Spans present a fairly simple rendering problem. A loop with linear interpolation between the two 
endpoints of each span generates individual pixel samples, which are then sent to the framebuffer.
Depth test

Straightforward z-buffering is used to resolve occlusions. While this is wasteful in the sense that 
many pixels that are rendered might be discarded late in the process, it is a simple method which is 
very easy to implement in hardware. All that is required is that the depth value of each rendered 
pixel is checked against a previously stored depth value, and allowed to update the frame buffer 
only if it is closer to the viewer than what has already been drawn in that pixel.
Double buffering

The frame buffer holds the pixel data. In addition to RGB color values, an alpha value (A) is often 
saved to support transparency and silhouette masks for compositing of several images. To make it 
possible to display something while an image is being rendered, and to have anything to display 
even if the rendering of a frame takes longer than the screen refresh rate of typically 60 Hz, a 
double buffer is used. While the latest RGBA image is being displayed, the next frame is rendered, 
and when the rendering is finished the two are swapped, the previous frame is erased, and rendering 
of the next frame starts. There is always a fully drawn image in a least one of the two buffers.
Texture memory

Textures play an important part in most 3D graphics applications, and textures are typically applied 
in the rasterization stage. Many 3D applications use a lot of high resolution textures, and for 
maximum performance the textures are stored in fast memory local to the GPU. This local memory 
is shared between the frame buffers (RGBA and Z) and textures, but considerably more space is 
used by textures. The total amount of memory available to a GPU is often 1GB or more. Just like in 
a CPU, a memory cache is used to speed up and parallelize the memory access.
Programmability

While the description above is still valid for the typical use of a GPU, there is one more thing to 
point out. In recent years, GPUs have become programmable at a low level, such that it is no longer 
a requirement to use only built-in, fixed algorithms for rendering. The transformation and the 
rasterization steps are now both fully programmable. By using a specialized programming language, 
the programmer can write small program snippets called shaders to take detailed control over what 
is being done to create and transform triangles and render pixels to the frame buffer. Software 
shader programming is an old concept in computer graphics, but hardware shaders executing on the 
GPU were introduced only about a decade ago, and the field is still in rapid development.



Speed
In the early days of graphics acceleration, emphasis was put on relieving the CPU from doing some 
mundane tasks and balancing the workload between the CPU and a dedicated graphics processing 
unit. The goal has now shifted towards pushing as much work as possible to the GPU, because it is 
capable of rendering 3D graphics roughly 100 to 1,000 times faster than a general CPU. The main 
reasons for its performance can be summarized as specialization, pipelining and parallelization. 
Specialization

A GPU is tailored to do graphics, and nothing else. The architecture is simple and does not require 
the generality and flexibility of a CPU, so everything can be very narrowly focused and optimized 
for the task at hand. Also, the local GPU memory is faster than the system memory.
Pipelining

The rendering is split up into several separate stages, with each stage handing over its data to the 
next stage without any need for iterations or backtracking. This makes it possible to have data 
continuously flowing through the system at all stages. As soon as one stage is done with one chunk 
of data, it hands the processed data over to the next stage and starts with the next chunk of data right 
away. This kind of data flow is called pipelining, named very appropriately after oil and gas 
pipelines. You put stuff in at one end and get the same kind of stuff out at the other end at the same 
rate, but the stuff that comes out was put in quite some time ago. The actual number of pipeline 
stages is considerably greater than the four steps shown in this simplified presentation, and the data 
throughput of a GPU is very high because most of its circuits can be kept busy all the time.
Parallelization

Last, and perhaps most importantly, the rendering algorithms for real time 3D graphics are chosen 
such that each triangle, in fact each pixel, can be processed independently of all others. This makes 
it comparably easy to have several parallel pipelines, each working on a different set of triangles or 
a different chunk of pixels, but rendering to the same frame buffer. A high performance GPU of 
today can have around one thousand identical units working in parallel for some tasks. Even though 
not all of these can work completely independent of another all the time, there are tremendous gains 
to be had from parallel computation in 3D graphics rendering, and in recent years considerable 
effort has been put into removing the performance bottlenecks for this kind of parallel execution.

Limitations
The pipeline architecture presented here is very useful indeed, but it has at least one clear limitation: 
the rendering is restricted to local reflection models. Effects like specular reflections and shadows 
can be faked by reflection mapping and shadow maps, but other global illumination effects can be 
very hard to simulate in a convincing manner. Efforts are made to make ray tracing and similar 
methods viable for real time rendering, but it will be some time yet before true global illumination 
methods can be used for general, interactive graphics. To some extent, real time 3D graphics is still 
restricted to rendering methods developed more than 20 years ago. Still, computer graphics has a 
long history of using successful cheats to get the desired visual result with as little computations as 
possible, and impressive things can be done even within the restrictions of the current hardware 
architecture.

GPU computation
Seeing how GPU raw computation performance is now many times higher than that of a general 
CPU, considerable effort has been spent on making that GPU horsepower available for general 
computations. Several useful programming interfaces have been developed in recent years to use 
the GPU for completely different things than to render graphics. Programming efficient algorithms 
for massively parallel architectures is a complex subject, but it is rapidly becoming very useful.


