Simplex noise demystified

Sefan Gustavson, Linkdping University, Swveden (stegu@itn.liu.se), 2005-03-22

In 2001, Ken Perlin presented “simplex noise’, areplacement for his classic noise algorithm.
Classic “Perlin noise” won him an academy award and has become a ubiquitous procedural
primitive for computer graphics over the years, but in hindsight it has quite a few limitations.
Ken Perlin himself designed simplex noise specifically to overcome those limitations, and he
spent alot of good thinking onit. Therefore, it isabetter ideathan hisoriginal algorithm. A few
of the more prominent advantages are:

» Simplex noise has alower computational complexity and requires fewer multiplications.

» Simplex noise scales to higher dimensions (4D, 5D and up) with much less computational
cost, the complexity is O(N) for N dimensions instead of the O(2) of classic Noise.

» Simplex noise has no noticeable directional artifacts.

» Simplex noise has awell-defined and continuous gradient everywhere that can be computed
quite cheaply.

» Simplex noiseis easy to implement in hardware.

Sadly, even now in early 2005 very few people seem to understand simplex noise, and almost
nobody usesit, whichiswhy | wrote this. | will try to explain the algorithm alittle more thor-
oughly than Ken Perlin had time to do in his course notes from Siggraph 2001 and 2002, and

hopefully make it clear that it is not as difficult to grasp asit first seems.

From what I’ ve learned, what confuses people the most is the impenetrable nature of Ken Per-
lin’s reference implementation in Java. He presents very compact and uncommented code to
demonstrate the principle, but that codeis clearly not meant to beread as atutorial. After afew
attempts | gave up on the code and read his paper instead, which wasalot more clear. Not crys-
tal clear, though, as he presents the algorithm mostly in words and code snippets. | would have
appreciated some graphs and figuresand afew hel pful equations, and that’ swhat | try to provide
here, to makeit easier for othersto understand the greatness and beauty of simplex noise. | will
also explain thingsin one and two dimensionsfirst to make things easier to explain with graphs
and images, and then move on to three and four dimensions.

Classic noise

In order to explain simplex noisg, it is helpful to have a good understanding of classic Perlin
noise. | have seen quite afew bad and misinformed explanations in this area, so to make sure
that you have the necessary groundwork done, | will present classic Perlin noise first.

Perlin noise is aso-called gradient noise, which means that you set a pseudo-random gradient

at regularly spaced pointsin space, and interpolate a smooth function between those points. To
generate Perlin noise in one dimension, you associate a pseudo-random gradient (or slope) for
the noise function with each integer coordinate, and set the function value at each integer coor-

dinate to zero.
M_f@/‘)
0 1273 4V 5

For agiven point x somewhere between two integer points, the value is interpolated between
two values, namely the values that would have been the result if the closest linear dopes from
the left and from the right had been extrapolated to the point in question. This interpolation is

not linear with distance, because that would not satisfy the constraint that the derivative of the
noise function should be continuous also at the integer points. Instead, a blending functionis
used that has zero derlvatlve at its endpoints. Originally, Ken Perlin used the Hermite blending
function f(t) = 3t°— 2t™, but because it is highly desirable to have a continuous second deriv-
ative for the n0|se functlon he later changed that to suggest afifth degree polynomia

f(t) = 6t° — 15t* + 10t°. These two functions are very similar, but the fifth degree curve aso
has a zero second derivative a its endpoints, which makes the noise function have a continuous
second derivative everywhere, and that makes the noise function better suited for the common
computer graphics tasks of surface displacement and bump mapping.

09
08}
07}
06|
05}
041
03}
021}
0.1}

—_ 312213
— 6{5-15t4+10t3

0 X X X X X X X X :
0 010203040506 07 0809 1

In two dimensions, the integer coordinate points form aregular square grid. At each grid point
apseudo-random 2D gradient is picked. For an arbitrary point P on the surface, the noisevalue
iscomputed from the four closest grid points. Asfor the 1D case, the contribution from each of
the four corners of the square grid cell is an extrapolation of alinear ramp with a constant gra-
dient, with the value zero at its associated grid point.

y (/AA
'/o ‘\o

Y X

I+1

wz'fv‘ >

1234

The value of each gradient ramp is computed by means of a scalar product (dot product) be-
tween the gradient vectors of each grid point and the vectors from the grid points
(,)),(i+1,)),(,j+1),(i+1j+1) tothepoint P being evaluated. In equations:
P=(xy),i = floor(x), | = floor(y)

Jgo = Oradient at (i, j), 9,9 = gradientat (i +1,])

Jp; = Oradientat (i,j+1), 9,4 = gradientat (i +1,j +1)

u=x-—i,v=y—j

_ u _ u-1 _ u _ u-1
noo—goo'H’nlo—glo'{ }nm—gm'{ }nn—gn'{ }
\Y; \Y; v-1 V—

The blending of the noise contribution from the four cornersis performed in amanner similar
to bilinear interpolation, using the fifth order blending curve to compute the interpolant:

f(t) = 6t°—15t* + 10t°
N = Ngof(u) + nyp(1=F(U)), Ny = Ny f(u) +nyy (1 -1(u))
Ny = Nyof(V) + Ny (1-F(v))

Theresult n,,, isthe final value of the noise function for the point (x, y) . In 3D, the gradients
arethree-dimensional and the interpolation is performed along three axes, one at atime. | do not
present details here, but you can find it in the code examples at the end of this document.
Generalization can be made to an arbitrary number of dimensions.

Picking the gradients

For the noise function to be repeatable, i.e. alwaysyield the same value for agiven input point,
gradients need to be pseudo-random, not truly random. They need to have enough variation to
concea the fact that the function is not truly random, but too much variation will cause unpre-
dictable behaviour for the noise function. A good choice for 2D and higher isto pick gradients
of unit length but different directions. For 2D, 8 or 16 gradients distributed around the unit circle
isagood choice. For 3D, Ken Perlin’s recommended set of gradients is the midpoints of each

of the 12 edges of a cube centered on the origin.

, 9o = (0.1,1), 9, = (0,1,-1),
9, = (0.-1,1), g3 = (0,-1,-1),
gs = (1,0,1), g5 = (1,0,-1),
y g6 = (-1,0,1),g; = (-1,0,-1),
g5 = (1,1,0), gg = (1,-1,0),
O, =(-1,10),9,; = (-1,-1,0)

For 4D, a suitable set of gradientsis the midpoints of each of the 32 edges of a4D hypercube:

9 =01,1,1,9,=(0,11-1),9,=(01-11),9; =(0,1,-1,-1),
g4=(0,-1,11),95=(0,-1,1-1), 9 = (0,-1,-1,1), g, = (0,-1,-1,-1),

gg = (1,0,1,1),99=1(1,01-1), g0 = (1,0,-1,1), g4 = (1,0,-1,-1),

gy, = (-1,0,L,1), 913=(-101,-1), 944 = (-1,0,-1 1), 945 = (-1,0,-1,-1),
O =(1,101),9y7=(410-1), 915 = (1,-1,0,1), g4 = (1,-1,0,-1),

Oy = (-1,14,0,1), g5, =(-11,0,-1), 9,, = (-1,-1,0, 1), gyp3 = (-1,-1,0,-1),
O =(1,110),9,5=(11-10), g5 = (1,-1,1,0), g5; = (1,-1,-1,0),

O = (-1,1,1,0), gyg = (-1,1,-1,0), g3 = (-1,-1,1,0), g3 = (-1,-1,-1,0)

It really doesn’t matter very much exactly which gradients are picked, aslong asthey are not
too few and are reasonably evenly distributed over all directions. Gradients with values of only
0, 1 and -1 for each component are chosen because taking a dot product with such a vector
does not require any multiplications, only additions and subtractions,

To associate each grid point with exactly one gradient, the integer coordinates of the point can
be used to compute a hash value, which in turn can be used as the index into alook-up table of
the gradients.

This concludes my presentation of classic Perlin noise.

Simplex grids

Simplex grids, or simplical tesselation of N-space, sounds fancy and isabit hard to grasp, but
what it boilsdown toisquite smple: for aspacewith N dimensions, pick the simplest and most
compact shapethat can berepeated to fill the entire space. For aone-dimensional space, the sm-
plest (in fact, the only possible) space-filling shapeisintervals of equal length placed one after
another, head totail. In two dimensions, the obvious choice for a space-filling shapeisasquare,
but that shape has more cornersthan what is necessary. The smplest shapethat tilesa2D plane
isatriangle, and the formal ssimplex shapein 2D isan equilatera triangle. Two of these make a
rhombus, a shape that can be thought of as a square that has been squashed along its main diag-
onal.

In three dimensions, the simplex shape isaslightly skewed tetrahedron, six of which make a
cube that has been sguashed along its main diagonal .

In four dimensions, the simplex shape is very hard to visualize, but it has five corners, and 24
of these shapes make a4D hypercubethat has been squashed along its main diagonal. Generally
speaking, the simplex shapefor N dimensionsis ashapewith N + 1 corners, and N! of these
shapes can fill an N-dimensional hypercube that has been squashed along its main diagonal.

The definite advantage of asimplex shapeisthat it has as few corners as possible, much fewer
cornersthan ahypercube. Thismakesit easier to interpolate valuesinthei nterli\lor of the simplex
based on the values at its corners. While ahypercube in N dimensionshas 2 corners, asim-

plexin N dimensionshasonly N + 1 corners. Aswe move to higher dimensions, the complex-
ity of evaluati ng afunction at each corner of a hypercube and interpolating along each principal
axisisan O(2 ") problem that quickly becomes intractable, while asimilar evaluation for each
corner of asimplex shape followed by interpolation presents amuch less daunting computation-
al task of complexity O(N).

Moving from inter polation to summation

A fundamental problem of classic noiseisthat it involves sequential interpolations along each
dimension. Apart from the rapid increase in computational complexity aswe move to higher di-
mensions, it becomes more and more of a problem to compute the analytic derivative of the in-
terpolated function. Simplex noiseinstead uses a straight summation of contributionsfrom each
corner, where the contribution is a multiplication of the extrapolation of the gradient ramp and
aradially symmetric attenuation function. In signal processing terms, thisisasignal reconstruc-
tion kernel. The radia attenuation is carefully chosen so that the influence from each corner

reaches zero before crossing the boundary to the next simplex. This means that points inside a
simplex will only beinfluenced by the contributions from the corners of that particular simplex.

A point P inside a simplex gets contributions to its
value only from the three kernels centered on the
surrounding corners (shaded, red circles). Kernels at

L OO -
Y‘!‘!‘!‘; corners farther away (green circles) decay to zero
\, f‘!‘?‘/‘ before they cross the boundary to the smplex con-

(VAVAVAVANER P S8ttt
(VAVAVAVAN

For 2D, theinfluence from each corner can be visualized asa small wigglefunction (Ken Perlin
uses the term “surflet”) around the corner point, with any point on the surface having at most
three non-zero parts of awiggle covering it.

-++.

Selecting and traversing a smplex

Thefinal trick to making asimplex noise algorithm work is to decide which simplex you arein
for any point in space. Thisis most easily performed in two steps. First you skew the input co-
ordinate space along the main diagonal so that each squashed hypercube of N! simplicestrans-
formsto aregular, axis-aligned N-dimensional hypercube. Then you can easily decide which
hypercube you are in by taking the integer part of the coordinatesfor each dimension, similarly
to classic noise. Then, the further decision on which particular simplex the point isin can be
made by comparing the magnitudes of the distancesin each dimension from the hypercube or-
igin to the point in question. Figures make this alot more clear.

A 2D simplex grid of triangles can be skewed by a nonuniform scaling to agrid of right-
angle isosceles triangles, two of which form a square with sides of length 1. By looking at
the integer parts of the transformed coordinates (x, y) for the point we want to evaluate, we
can quickly determine which cell of two simplices that contains the point. By also compar-
ing the magnitudes of x and y, we can determine whether the point isin the upper or the
lower simplex, and traverse the correct three corner points.

Just like a2D simplex grid can be skewed to a regular square grid, a 3D simplex grid can be
skewed to aregular cubical grid by a scaling along the main diagonal, and the integer parts of
the coordinates for the transformed point can be used to determine which cell of 6 simplicesthe
point isin. To further determine which of the 6 smplices we are in, we look at the magnitude
of the coordinates relative to the cell origin. The figure below is aview of a cube cell along its
maindiagonal x = y = z. Pointsin the six simplices obey quite simple rules.

Y yxoz

y>z>X

For the 4D case, things become incomprehensible visualy, but the methods presented for 2D
and 3D generalize nicely to higher dimensions. Sorting the (x,y,z,w) coordinates within the hy-
percube reveals 4! = 24 possible outcomes for the ordering of the magnitude of the coordi-
nates, and each particular ordering is unique to one of the 24 smplices.

In 2D, if x>y thesimplex cornersare (0, 0), (1,0) and (1, 1), else the Ssmplex corners are
(0,0), (0,1) and (1, 1). The ssmplex traversal aways takes one unit step in X and one unit
stepiny, but in different order for each of the ssmplices.

Thetraversal schemefor 2D generalizesstraight off to 3D and further to an arbitrary number of
dimensions: to traverse each corner of asimplex in N dimensions, we should move from the
origin of the hypercube (0, O, ..., 0) to the opposite corner (1, 1, ..., 1), and move unit steps
along each principal axisin turn, from the coordinate with the highest magnitude to the coordi-
nate with the lowest magnitude.

The magnitude sorting of componentsto decide which order of unit steps along each dimension
that traverses the smplex can be performed explicitly, by the usual pair-wise comparisons and
swaps, but the results from the comparisons can aso be used as an index into alookup table.
Thisisefficient and hardware friendly up to 5 dimensions, but becomes unwieldy for 6D and
downright silly for higher dimensions. Explicit sorting will of course add to the complexity.

Example code

All this can be put into code, and the code can be made alot more clear than Ken Perlin’s com-
pact and uncommented Java reference implementation. | will use ahybrid approach for clarity,
using the gradient hash method from classic noise but the smplex grid and straight summation
of noise contributions of simplex noise. That is actually afaster method in software. My imple-
mentation givesthe same visual appearance asPerlinssimplex noise, but it doesnot give exactly
the same pattern pixel for pixel, because the gradients are picked differently. If required, an
exact match can be made by redesigning the gradient array and the permutation table.

To make the difference clear between classic noise and simplex noise, | first present code for
classic Perlinnoisein 3D, in animplementation and acoding stylethat isaimed at being similar
to the simplex noise implementation to facilitate direct comparison. | then move onto 2D sm-
plex noise, which Perlin does not present in his article, continue with my re-implementation of
3D smplex noise, and conclude with 4D simplex noise, which Perlin does not present either.

My code is unnecessarily long-winded, but readable. | tried to stay away from obfuscating
shortcuts. | even avoided loopsin order to show exactly what is being done, so thereis quite a
lot of stupid cut-and-paste and repetitive code that could be rewritten in a much more compact
form by using short loops and a few small arraysinstead of individual named variables.

Like Ken Perlin, | chose Java as the programming language for these examples. The Java code
isvery basic and should be easy to port to other languages even if you don’t know Java. In fact,
thecodel present isabackport to JavafromaGL SL project where | implemented simplex noise
in afragment shader. Some parts of the code are leftovers from the limitations of GLSL, and
might not be particularly efficient for a pure software implementation. It is faster than Ken Per-
lins reference implementation, but his codeis not particularly fast either, becauseit usesalong
sequence of bit-wise operations on computing a hash value which | instead read directly from a
small permutaton array. Perlin’s code, athough it iswritten in Java, isreally aimed at a hard-
wareimplementation. So, if you are looking for afast implementation of ssmplex noise, the code
on the following pages might not be what you want. It isnot dead slow, but it isfirst and fore-
most explanatory and meant to be read by humans, so it could be speeded up.

One disadvantage of my version isthat it uses more memory than Perlin’s simplex noise. | use
afew look-up tablesfor some stuff that could be implemented in other waysif memory isatight
or nonexistent resource, e.g. if you are aiming at a immed bare-bones hardware implementa-
tion with logic gates and registers, or if you need to do thisentirely in asmall set of registersin
aDSP architecture or something else with a high penalty for memory accesses. On modern pro-
grammable graphics hardware, there is an abundance of texture memory and texture access
functions with good performance, so look-up tables of reasonable size can be implemented ef-
ficiently, and in software on ageneral CPU, afew hundred bytes of storageisnot a problem.

public class ClassicNoise { // Classic Perlin noise in 3D, for comparison

private static int grad3[][] = {{1,1,0},{-1,1,0%},{1,-1,0},{-1,-1,0%},
{11011}1{_11011}1{1101 I{_llol_l}l
{01111}1{01_111} {011 1{01_11_1}};

private static int p[] = {151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180};

-1}
I 1_1}

// To remove the need for index wrapping, double the permutation table length
private static int perm[] = new int[512];
static { for(int i=0; i<512; i++) perm[i]=p[i & 255]; }

// This method is a *lot* faster than using (int)Math.floor(x)
private static int fastfloor(double x) {
return x>0 ? (int)x : (int)x-1;

be

private static double dot(int g[], double x, double y, double z) {
return g[0]*x + g[1]*y + g[2]*z;
b

private static double mix(double a, double b, double t) {
return (1-t)*a + t*b;

be

private static double fade(double t) {
return t*t*t*(t*(t*6-15)+10);
b

// Classic Perlin noise, 3D version
public static double noise(double x, double y, double z) {

// Find unit grid cell containing point
int X = fastfloor(x);
int Y = fastfloor(y);
int Z = fastfloor(z);

// Get relative xyz coordinates of point within that cell

X =X-X;
y=vy-yY;
z=2z-127;

// Wrap the integer cells at 255 (smaller integer period can be introduced here)
X =X & 255;
Y =Y & 255;
Z=Z7Z& 255;

// Calculate a set of eight hashed gradient indices

int gi000 = perm[X+perm[Y+perm[Z]]] % 12;

int gi001 = perm[X+perm[Y+perm[Z+1]]] % 12;

int gi010 = perm[X+perm[Y+1+perm[Z]]] % 12;

int gi01l1l = perm[X+perm[Y+1+perm[Z+1]]] % 12;
int gil00 = perm[X+1+perm[Y+perm[Z]]] % 12;

int gil01 = perm[X+1+perm[Y+perm[Z+1]]] % 12;
int gil10 = perm[X+1+perm[Y+1+perm[Z]]] % 12;
int gilll = perm[X+1+perm[Y+1+perm[Z+1]]] % 12;

// The gradients of each corner are now:
// g000 = grad3[gi000];
// g001 = grad3[gi001];
// g010 = grad3[gi010];
// g011 = grad3[gi011];
// g100 = grad3[gi100];
// g101 = grad3[gil101];
// g110 = grad3[gil110];
// gl111 = grad3[gilll];

// Calculate noise contributions from each of the eight corners
double n000= dot(grad3[gi000], x, vy, 2);

double n100= dot(grad3[gil00], x-1, vy, z);

double n010= dot(grad3[gi010], x, y-1, z);

double n110= dot(grad3[gil10], x-1, y-1, z);

double n001= dot(grad3[gi001], x, y, z-1);

double n101= dot(grad3[gil01], x-1, vy, z-1);

double n011= dot(grad3[gi011], x, y-1, z-1);

double n111= dot(grad3[gilll], x-1, y-1, z-1);

// Compute the fade curve value for each of x, vy, z
double u = fade(x);
double v = fade(y);
double w = fade(z);

// Interpolate along x the contributions from each of the corners
double nx00 = mix(n000, n100, u);
double nx01 = mix(n001, n101, u);
double nx10 = mix(n010, n110, u);
double nx11 = mix(n011, n111, u);

// Interpolate the four results along y
double nxy0 = mix(nx00, nx10, v);
double nxyl = mix(nx01, nx11, v);

// Interpolate the two last results along z
double nxyz = mix(nxy0, nxyl, w);

return nxyz;

public class SimplexNoise { // Simplex noise in 2D, 3D and 4D

private static int grad3[][] = {{1,1,0},{-1,1,0%},{1,-1,0},{-1,-1,03},
{1 0 1} { 110 }1{1101_1}/{ 1 0 1}/
{0,1,1},{0,-1,1},{0,1,-1},{0,-1,-1}};

private static int grad4[][]= {{0,1,1,1}, {0,1,1,-1%, {0,1,-1,1}, {0,1,-1,-1%},
{01_11111}1 {01_1111_1}1 {OI 1 -1 1} {0 1 1 1}1
£1,0,1,1Y, {1,0,1,-1}, 1,0, 11} £1,0,-1,-1},

£-1,0,1,1}, €-1,0,1,-1}, {-1,0,-1,1%, {-1,0,-1,-1},

£1,1,0,1Y, {1,1,0,-1}, {1,-1,0,1}, {1,-1,0,-1%,

{_1111011}1 {_111101_1}1 { 1 1 0 1} { 1 1 0 1}1

{1111110}1 {1111_110}1 {11_11110}1 {11_11_1/0}1

{_1111110}1 {_1111_110}1 {_11_11110}1 {_11_11_110}};

I Ia

private static int p[] = {151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180};

// To remove the need for index wrapping, double the permutation table length
private static int perm[] = new int[512];
static { for(int i=0; i<512; i++) perm[i]=p[i & 255]; }

// A lookup table to traverse the simplex around a given point in 4D.
// Details can be found where this table is used, in the 4D noise method.
private static int simplex[][] = <

{0,1,2,3},0,1,3,2},{0,0,0,0},{0,2,3,1},{0,0,0,0%},{0,0,0,0%},{0,0,0,0%},{1,2,3,0},
{0,2,1,3},{0,0,0,0},{0,3,1,2},{0,3,2,1},{0,0,0,0},{0,0,0,0%},{0,0,0,0%},{1,3,2,0},
{0,9,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0%},{0,0,0,0%},{0,0,0,0%},{0,0,0,0},
{1,2,0,3},{0,0,0,0},{1,3,0,2},{0,0,0,0},{0,0,0,0},{0,0,0,0%},{2,3,0,1},{2,3,1,0},
{1,0,2,3},{1,0,3,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,0,3,1%},{0,0,0,0},{2,1,3,0},
{0,9,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0%},{0,0,0,0%,{0,0,0,0%},{0,0,0,0},
{2,0,1,3},0,0,0,0},{0,0,0,0},{0,0,0,0},{3,0,1,2},{3,0,2,1%},{0,0,0,0},{3,1,2,0},
{2,1,0,3},09,0,0,0},{0,0,0,0},{0,0,0,0},{3,1,0,2},{0,0,0,0},{3,2,0,1},{3,2,1,0}};

// This method is a *lot* faster than using (int)Math.floor(x)
private static int fastfloor(double x) {
return x>0 ? (int)x : (int)x-1;

be

private static double dot(int g[], double x, double y) {
return g[0]*x + g[1]*y; }

private static double dot(int g[], double x, double y, double z) {
return g[0]*x + g[1]*y + g[2]*z; }

private static double dot(int g[], double x, double y, double z, double w) {
return g[0]*x + g[1]*y + g[2]*z + g[3]*w; }

// 2D simplex noise
public static double noise(double xin, double yin) {

double n0, n1, n2; // Noise contributions from the three corners

// Skew the input space to determine which simplex cell we're in
final double F2 = 0.5*(Math.sqrt(3.0)-1.0);

double s = (xin+yin)*F2; // Hairy factor for 2D

int i = fastfloor(xin+s);

int j = fastfloor(yin+s);

final double G2 = (3.0-Math.sqrt(3.0))/6.0;

double t = (i+j)*G2;

double X0 = i-t; // Unskew the cell origin back to (x,y) space
double YO = j-t;

double x0 = xin-X0; // The x,y distances from the cell origin
double y0 = yin-YO;

// For the 2D case, the simplex shape is an equilateral triangle.

// Determine which simplex we are in.

intil, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if(x0>y0) {il=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1)

// A step of (1,0) in (i,j) means a step of (1-c,-¢) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-¢,1-c) in (x,y), where
/] ¢ = (3-sqrt(3))/6

double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
double y1 = y0 - j1 + G2;
double x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords

double y2 = y0 - 1.0 + 2.0 * G2;

// Work out the hashed gradient indices of the three simplex corners
intii =i & 255;

int jj =j & 255;

int gi0 = perm[ii+perm[jj]] % 12;

int gil = perm[ii+il+perm[jj+jl1]] % 12;

int gi2 = perm[ii+1+perm[jj+1]] % 12;

// Calculate the contribution from the three corners
double t0 = 0.5 - x0*x0-y0*yO0;
if(t0<0) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
¥

double t1 = 0.5 - x1*x1-yl*yl1;
if(t1<0) n1 = 0.0;
else {

tl *=t1;

nl =tl * t1 * dot(grad3[gil], x1, y1);
b

double t2 = 0.5 - x2*x2-y2*y2;
if(t2<0) n2 = 0.0;

else {

t2 *=t2;

n2 =t2 * t2 * dot(grad3[gi2], x2, y2);
b

// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 70.0 * (n0 + nl1 + n2);

// 3D simplex noise
public static double noise(double xin, double yin, double zin) {

double n0, n1, n2, n3; // Noise contributions from the four corners

// Skew the input space to determine which simplex cell we're in

final double F3 = 1.0/3.0;

double s = (xin+yin+zin)*F3; // Very nice and simple skew factor for 3D
int i = fastfloor(xin+s);

int j = fastfloor(yin+s);

int k = fastfloor(zin+s);

final double G3 = 1.0/6.0; // Very nice and simple unskew factor, too
double t = (i+j+k)*G3;

double X0 = i-t; // Unskew the cell origin back to (x,y,z) space
double YO = j-t;

double Z0 = k-t;

double x0 = xin-X0; // The x,y,z distances from the cell origin

double y0 = yin-YO;

double z0 = zin-Z0;

// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.

intil, j1, k1; // Offsets for second corner of simplex in (i,j, k) coords
inti2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords

if(x0>=y0) {
if(y0>=z0)
{i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // XY Z order
else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order
else {i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order
)
else { // x0<y0
if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // ZY X order
else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order
else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order
)

// A step of (1,0,0) in (i,j,k) means a step of (1-¢,-c,-¢) in (x,Y,z),

// a step of (0,1,0) in (i,j,k) means a step of (-¢,1-c,-¢) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-¢) in (x,y,z), where
// c=1/6.

double x1 = x0 - i1 + G3; // Offsets for second corner in (X,y,z) coords
double y1 = y0 - j1 + G3;

double z1 = z0 - k1 + G3;

double x2 = x0 - i2 + 2.0*G3; // Offsets for third corner in (x,y,z) coords
double y2 = y0 - j2 + 2.0*G3;

double z2 = z0 - k2 + 2.0*G3;

double x3 = x0 - 1.0 + 3.0*G3; // Offsets for last corner in (x,y,z) coords
double y3 = y0 - 1.0 + 3.0*G3;

double z3 = z0 - 1.0 + 3.0*G3;

// Work out the hashed gradient indices of the four simplex corners
int ii =i & 255;

int jj = j & 255;

int kk = k & 255;

int gi0 = perm[ii+perm[jj+perm[kk]]] % 12;

int gil = perm[ii+il+perm[jj+jl+perm[kk+k1]]] % 12;

int gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2]]] % 12;

int gi3 = perm[ii+1+perm[jj+1+perm[kk+1]]] % 12;

// Calculate the contribution from the four corners
double t0 = 0.6 - x0*x0 - yO*y0 - z0*z0;
if(t0<0) n0 = 0.0;
else {
t0 *=t0;
n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0);
)

double t1 = 0.6 - x1*x1 - yl*y1 - z1*z1;
if(t1<0) n1 = 0.0;

else {

tl *=t1;

nl =tl * t1 * dot(grad3[gil], x1, y1, z1);
b

double t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
if(t2<0) n2 = 0.0;
else {

t2 *=t2;

n2 =t2 * t2 * dot(grad3[gi2], x2, y2, z2);
b

double t3 = 0.6 - x3*x3 - y3*y3 - z3*Zz3;
if(t3<0) n3 = 0.0;
else {

t3 *=t3;

n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3);
b

// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0*%(n0 + n1 + n2 + n3);

be

// 4D simplex noise
double noise(double x, double y, double z, double w) {

// The skewing and unskewing factors are hairy again for the 4D case
final double F4 = (Math.sqrt(5.0)-1.0)/4.0;

final double G4 = (5.0-Math.sqrt(5.0))/20.0;

double n0, n1, n2, n3, n4; // Noise contributions from the five corners

// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
doubles = (x + vy + z + w) * F4; // Factor for 4D skewing

int i = fastfloor(x + s);

int j = fastfloor(y + s);

int k = fastfloor(z + s);

int | = fastfloor(w + s);

doublet = (i +j + k + 1) * G4, // Factor for 4D unskewing

double X0 =i - t; // Unskew the cell origin back to (x,y,z,w) space
double YO =j - t;

double Z0 = k - t;

double WO = [- t;

double x0 = x - X0; // The x,y,z,w distances from the cell origin
double yO =y - YO;

double z0 = z - Z0;

double w0 = w - WO;

// For the 4D case, the simplex is a 4D shape I won't even try to describe.
// To find out which of the 24 possible simplices we're in, we need to

// determine the magnitude ordering of x0, y0, z0 and wO.

// The method below is a good way of finding the ordering of x,y,z,w and
// then find the correct traversal order for the simplex we're in.

// First, six pair-wise comparisons are performed between each possible pair
// of the four coordinates, and the results are used to add up binary bits
// for an integer index.

intcl =(x0>vy0)?32:0;

intc2 = (x0>2z0)?16: 0;

intc3 =(y0>2z0)?8:0;

intcd = (x0 >w0)?4:0;

intcS = (y0>w0)?2:0;

intcé = (z0>w0)?1:0;

intc=cl +c2+c3+c4+ch+cb;

intil, j1, k1, 11; // The integer offsets for the second simplex corner
inti2, j2, k2, 12; // The integer offsets for the third simplex corner
int i3, j3, k3, 13; // The integer offsets for the fourth simplex corner

// simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.

// Many values of ¢ will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
// impossible. Only the 24 indices which have non-zero entries make any sense.

// We use a thresholding to set the coordinates in turn from the largest magnitude.
// The number 3 in the "simplex" array is at the position of the largest coordinate.
il = simplex[c][0]>=37?1:0;

j1 = simplex[c][1]>=3 7?1 : 0;

kl = simplex[c][2]>=3 7?1 : O;

11 = simplex[c][3]>=37?1:0;

// The number 2 in the "simplex" array is at the second largest coordinate.

i2 = simplex[c][0]>=27?1:0;

j2 = simplex[c][1]>=2"7?1: 0;

k2 = simplex[c][2]>=27?1: 0;
12 = simplex[c][3]>=27?1:0;
// The number 1 in the "simplex" array is at the second smallest coordinate.
i3 = simplex[c][0]>=17?1:0;
j3 = simplex[c][1]>=17?1: 0;
k3 = simplex[c][2]>=17?1: O;
I3 = simplex[c][3]>=17?1:0;
// The fifth corner has all coordinate offsets = 1, so no need to look that up.

double x1 = x0 - i1 + G4,; // Offsets for second corner in (x,y,z,w) coords
double y1 = y0 - j1 + G4;

double z1 = z0 - k1 + G4;

double wl = w0 - 11 + G4;

double x2 = x0 - i2 + 2.0*G4; // Offsets for third corner in (x,y,z,w) coords
double y2 = y0 - j2 + 2.0*G4;

double z2 = z0 - k2 + 2.0*G4;

double w2 = w0 - 12 + 2.0*G4;

double x3 = x0 - i3 + 3.0*G4,; // Offsets for fourth corner in (x,y,z,w) coords
double y3 = y0 - j3 + 3.0*G4;

double z3 = z0 - k3 + 3.0*G4;

double w3 = w0 - 13 + 3.0*G4;

double x4 = x0 - 1.0 + 4.0*G4; // Offsets for last corner in (x,y,z,w) coords
double y4 = y0 - 1.0 + 4.0*G4;

double z4 = z0 - 1.0 + 4.0*G4;

double w4 = w0 - 1.0 + 4.0*G4;

// Work out the hashed gradient indices of the five simplex corners
int ii =i & 255;

int jj = j & 255;

int kk = k & 255;

int Il =1 & 255;

int gi0 = perm[ii+perm[jj+perm[kk+perm[lI]1]]] % 32;

int gil = perm[ii+il+perm[jj+jl+perm[kk+kl+perm[lI+I1]]]] % 32;
int gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[lI+I12]]]] % 32;
int gi3 = perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[lI+I3]]]] % 32;
int gi4 = perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]] % 32;

// Calculate the contribution from the five corners
double t0 = 0.6 - x0*x0 - yO*y0 - z0*z0 - wO*w0;
if(t0<0) n0 = 0.0;
else {

t0 *=t0;

n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0);
)

double t1 = 0.6 - x1*x1 - y1*yl - z1*z1 - wl*wl;
if(t1<0) n1 = 0.0;

else {

tl *=t1;

nl = tl1 * t1 * dot(grad4[gil], x1, y1, z1, wl);
b

double t2 = 0.6 - x2*x2 - y2*y2 - z2*z2 - w2*w2;
if(t2<0) n2 = 0.0;
else {

t2 *=t2;

n2 =t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2);
b

double t3 = 0.6 - x3*x3 - y3*y3 - z3*z3 - w3*w3;
if(t3<0) n3 = 0.0;
else {

t3 *=t3;

n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3);
b

double t4 = 0.6 - x4*x4 - y4*y4 - z4*z4 - w4d*w4;
if(t4<0) n4 = 0.0;
else {

t4 *=t4;

n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4);
b

// Sum up and scale the result to cover the range [-1,1]
return 27.0 * (n0 + n1 + n2 + n3 + n4);
b
b

Visual comparison between classic and smplex noise

It is evident that smplex noise in most respects is a better idea than classic noise, and that it
meets the criteria Ken Perlin set up to characterise a“good” Noise function. However, it has a
dightly different visual character toit, soit’snot alwaysadirect plug-in replacement for classic
noise. Applications that depend on the detailed characteristics of classic noise, like the precise
feature size, the exact range of values or higher order statistics, might need some modification
to look good when using ssimplex noise instead. Note in particular that a 3D section of 4D sim-
plex noiseis different from 3D simplex noise. Thisisthe visual result of moving from the time-
consuming interpolation one dimension at atime to a fast, direct summation.

Classic Perlin noise Simplex noise

2D

3D

4D

	Classic noise
	Picking the gradients
	Simplex grids
	Moving from interpolation to summation
	Selecting and traversing a simplex
	Example code
	Visual comparison between classic and simplex noise

