
Contents

1 Procedural Textures in GLSL 1
1.1 Introduction . 1
1.2 Simple Functions . 3
1.3 Anti-Aliasing . 3
1.4 Perlin Noise . 6
1.5 Worley Noise . 8
1.6 Animation . 10
1.7 Texture Images . 12
1.8 Performance . 12
1.9 Conclusion . 14
Bibliography . 15

Index 17

i

Procedural Textures in GLSL
Stefan Gustavson

1.1 Introduction

Procedural textures are textures that are computed on the fly during ren-
dering, as opposed to pre-computed image-based textures. At first glance,
computing a texture from scratch for each frame may seem like a stupid
idea, but procedural textures have been a staple of software rendering
for decades, and for good reasons. With the ever increasing levels of
performance for programmable shading in GPU architectures, hardware-
accelerated procedural texturing in GLSL is now becoming quite useful,
and it deserves more consideration than what is current practice. An ex-
ample of what can be done is shown in Figure 1.1.

Figure 1.1. Examples of procedural textures. A modern GPU renders this image
at full screen resolution in a few milliseconds.

Writing a good procedural shader is more complicated than using im-
age editing software to paint a texture or edit a photographic image to suit
our needs, but with procedural shaders, the pattern and the colors can be
varied with a simple change of parameters. This allows extensive re-use for
many different purposes, as well as fine tuning or even complete overhauls of
surface appearance very late in a production process. A procedural pattern
allows for analytic derivatives, which makes it less complicated to gener-
ate corresponding bump or normal maps and enables analytic anisotropic
antialiasing. Procedural patterns require very little storage, and they can
be rendered at an arbitrary resolution without jagged edges or blurring,
which is particularly useful for rendering of close-up details in real time
applications where the viewpoint is often unrestricted. A procedural tex-

1

2 CONTENTS

ture can be designed to avoid problems with seams and periodic artifacts
when applied to a large area, and random-looking detail patterns can be
generated automatically instead of having artists paint them. Procedural
shading also removes the memory restrictions for 3D textures and animated
patterns. 3D procedural textures, solid textures, can be applied to objects
of any shape without requiring 2D texture coordinates.

While all these advantages have made procedural shading popular for of-
fline rendering, real-time applications have been slow to adopt the practice.
One obvious reason is that the GPU is a limited resource, and quality often
has to be sacrificed for performance. However, recent developments have
given us lots of computing power even on typical consumer level GPUs, and
given their massively parallel architectures, memory access is becoming a
major bottleneck. A modern GPU has an abundance of texture units and
uses caching strategies to reduce the number of accesses to global memory,
but many real-time applications now have an imbalance between texture
bandwidth and processing bandwidth. ALU instructions can essentially be
“free” and cause no slowdown at all when executed in parallel to memory
reads, and image-based textures can be augmented with procedural ele-
ments. Somewhat surprisingly, procedural texturing is also useful at the
opposite end of the performance scale. GPU hardware for mobile devices
can incur a considerable penalty for texture download and texture access,
and this can sometimes be alleviated by procedural texturing. A proce-
dural shader does not necessarily have to be complex, as demonstrated by
some of the examples in this chapter.

Procedural methods are not limited to fragment shading. With the ever
increasing complexity of real time geometry and the recent introduction of
GPU-hosted tessellation, as discussed in Chapter ??, tasks like surface dis-
placements and secondary animations are best performed on the GPU. The
tight interaction between procedural displacement shaders and procedural
surface shaders has proven very fruitful for creating complex and impressive
visuals in off-line shading environments, and there is no reason to assume
that real-time shading would be fundamentally different in that respect.

This chapter is meant as an introduction to procedural shader program-
ming in GLSL. First, we present some fundamentals of procedural patterns,
including anti-aliasing. A significant portion of the chapter presents re-
cently developed, efficient methods for generating Perlin noise and other
noise-like patterns entirely on the GPU, along with some benchmarks to
demonstrate their performance. The code repository for the book, available
from www.openglinsights.com, contains a cross-platform demo program
and a library of useful GLSL functions for procedural texturing.

1. Procedural Textures in GLSL 3

1.2 Simple Functions

Procedural textures are a different animal than image-based textures. The
concept of designing a function to efficiently compute a value at an arbitrary
point without knowledge of any surrounding points takes some getting used
to. A good book on the subject, in fact the book on the subject, is [Ebert
et al. 03]. Its sections on hardware acceleration have become outdated, but
the rest is good. Another classic text on software procedural shaders well
worth reading is [Apodaca and Gritz 99].

Figure 1.2 presents a varied selection of regular procedural patterns and
the GLSL expression that generates them. The examples are monochrome
but, of course, black and white could be substituted with any color or
texture by using the resulting pattern as the last parameter to the mix()

function.
For anti-aliasing purposes, a good design choice is to first create a con-

tinuous distance function of some sort, and then threshold it to get the
features we want. The last three of the patterns in Figure 1.2 follow this
advice. None of the examples implement proper anti-aliasing, but we will
cover this in a moment.

As an example, consider the circular spots pattern. First, we create a
periodic repeat of the texture coordinates by scaling st by 5.0 and taking
the fractional part of the result. Subtracting 0.5 from this creates cells
with 2D coordinates in the range −0.5 to 0.5. The distance to the cell-
local origin as computed by length() is a continuous function everywhere
in the plane, and thresholding it by smoothstep() yields circular spots of
any desired size.

There is a knack to designing patterns like this from scratch, and it
takes practice to do it well, but experimenting is a fun learning experience.
However, take warning from the last example in Figure 1.2: writing this
kind of functions as one-liners will quickly make them unreadable even to
their author. Use intermediate variables with relevant names, and comment
all code. One of the advantages of procedural textures is that they can be
reused for different purposes, but that point is largely moot if the shader
code is impossible to understand. GLSL compilers are reasonably good
at simple optimizations like removing temporary variables. Some spoon-
feeding of GLSL compilers is still in order to create optimal shader code,
but readability does not have to be sacrificed for compactness.

1.3 Anti-Aliasing

Beginners’ experiments with procedural patterns often result in patterns
that alias terribly, but that problem can be solved. The field of software

4 CONTENTS

smoothstep(0.4, 0.5, max(
 abs(fract(8.0*s - 0.5*mod(
 floor(8.0*t), 2.0)) - 0.5),
 abs(fract(8.0*t) - 0.5)))

smoothstep(-0.01, 0.01,
 0.2 - 0.1*sin(30.0*s) - t)

smoothstep(0.3, 0.32,
 length(fract(5.0*st)-0.5))

s fract(5.0*s)

abs(fract(5.0*s)*2.0-1.0) mod(floor(10.0*s)
 + floor(10.0*t), 2.0)

Figure 1.2. Examples of regular procedural patterns. Texture coordinates are
either float s,t or vec2 st, 0 ≤ s ≤ 1 and 0 ≤ t ≤ 0.4.

shader programming has methods of eliminating or reducing aliasing, and
those methods translate directly to hardware shading. Anti-aliasing is even
more important for real-time content, because the camera view is often
unrestricted and unpredictable. Supersampling can always reduce aliasing,
but it is not a suitable routine remedy, because a well written procedural
shader can perform its own anti-aliasing with considerably less work than
what a brute force supersampling would require.

Many useful patterns can be generated by thresholding a smoothly vary-
ing function. For such thresholding, using conditionals (if-else) or the
all-or-nothing step() function will alias badly and should be avoided. In-

1. Procedural Textures in GLSL 5

stead, use the smoothstep() and mix() functions to create a blend region
between the two extremes, and take care to make the width of the blend re-
gion as close as possible to the size of one fragment. To relate shader space
(texture coordinates or object coordinates) to fragment space in GLSL, we
use the automatic derivative functions dFdx() and dFdy(). There have
been some teething problems with these functions, but now they can be
expected to be implemented correctly and efficiently on all GLSL-capable
platforms. The local partial derivatives are approximated by differences
between neighboring fragments, and they require very little extra effort to
compute. See Figure 1.3. The partial derivative functions break the rule
that a fragment shader has no access to information from other fragments
in the same rendering pass, but it is a very local special case handled behind
the scenes by the OpenGL implementation. Mipmapping and anisotropic
filtering of image-based textures use this feature as well, and proper anti-
aliasing of textures would be near impossible without it.

F(x,y) F(x+1,y)

F(x,y+1) dFdx = F(x+1,y) - F(x,y)
dFdy = F(x,y+1) - F(x,y)

Figure 1.3. “Automatic derivatives” dFdx() and dFdy() in a fragment shader
are simply differences between arbitrary computed values of two neighboring
fragments. Derivatives in x and y in one fragment (bold square) are computed
using one neighbor each (thin squares). If the right or top neighbors are not part
of the same primitive, or for reasons of efficiency, the left or bottom neighbors
may be used instead.

For smooth, anisotropic anti-aliasing of a thresholding operation on a
smoothly varying function F , we need to compute the length of the gradient
vector in fragment space and make the step width of the smoothstep()

function dependent on it. The gradient in fragment space (x, y) of F is
simply (∂F

∂x ,
∂F
∂y). The built-in function fwidth() computes the length of

that vector as |∂F∂x | + |
∂F
∂y | in a somewhat misguided attempt to be fast

on older hardware. A better choice in most cases nowadays is to compute

the true length of the gradient,
√

∂F
∂x

2
+ ∂F

∂y

2
, according to Listing 1.1.

Using ±0.7 instead of ±0.5 for the step width compensates for the fact
that smoothstep() is smooth at its endpoints and has a steeper maximum
slope than a linear ramp.

In some cases, the analytical derivative of a function is simple to com-
pute, and it may be inefficient or inaccurate to approximate it using finite

6 CONTENTS

// 'threshold ' is constant , 'value ' is smoothly varying
float aastep(float threshold , float value) {

float afwidth = 0.7 * length(vec2(dFdx(value), dFdy(value)));
// GLSL 's fwidth(value) is abs(dFdx(value)) + abs(dFdy(value))
return smoothstep(threshold -afwidth , threshold+afwidth , value);

}

Listing 1.1. Anisotropic anti-aliased step function.

differences. The analytical derivative is expressed in 2D or 3D texture co-
ordinate space, but anti-aliasing requires knowledge of the length of the
gradient vector in 2D screen space. Listing 1.2 shows how to transform or
project vectors in texture coordinate space to fragment coordinate space.
Note that we need two to three times as many values from dFdx() and
dFdy() to project an analytical gradient to fragment space compared to
computing an approximate gradient directly in fragment space, but auto-
matic derivatives come fairly cheap.

// st is a vec2 of texcoords , G2_st is a vec2 in texcoord space
mat2 Jacobian2 = mat2(dFdx(st), dFdy(st));
// G2_xy is G2_st transformed to fragment space
vec2 G2_xy = Jacobian2 * G2_st;
// stp is a vec3 of texcoords , G3_stp is a vec3 in texcoord space
mat2x3 Jacobian3 = mat2x3(dFdx(stp), dFdy(stp));
// G3_xy is G3_stp projected to fragment space
vec2 G3_xy = Jacobian3 * G3_stp;

}

Listing 1.2. Transforming a vector in (s, t) or (s, t, p) texture space to fragment
(x, y) space.

1.4 Perlin Noise

Perlin noise, introduced by Ken Perlin, is a very useful building block of
procedural texturing [Perlin 85]. In fact, it revolutionized software ren-
dering of natural-looking surfaces. Some patterns generated using Perlin
noise are shown in Figure 1.4, along with the shader code that generates
them. By itself, it is not a terribly exciting-looking function – it is just a
blurry pattern of blotches within a certain range of sizes. However, noise

1. Procedural Textures in GLSL 7

can be manipulated in many ways to create impressive visual effects. It
can be thresholded and summed to mimic fractal patterns, and it has great
potential also for introducing some randomness in an otherwise regular
pattern. The natural world is largely built on or from stochastic processes,
and manipulations of noise allows a large variety of natural materials and
environments to be modeled procedurally.

The examples in Figure 1.4 are static 2D patterns, but some of the
more striking uses of noise use 3D texture coordinates and/or time as an
extra dimension for the noise function. The code repository for this chapter
contains an animated demo displaying the scene in Figure 1.1. The left two
spheres and the ground plane are examples of patterns generated by one
or more instances of Perlin noise.

float perlin = 0.5 +
 0.5*snoise(vec3(10.0*st, 0.0));
gl_FragColor = vec4(vec3(perlin), 1.0);

float cow = snoise(vec3(10.0*st, 0.0));
cow += 0.5*snoise(vec3(20.0*st, 0.0));
cow = aastep(0.05, n);
gl_FragColor = vec4(vec3(cow), 1.0);

float fbm=snoise(vec3(5.0*st, 0.0))
 + 0.5*snoise(vec3(10.0*st, 2.0))
 + 0.25*snoise(vec3(20.0*st, 4.0))
 + 0.125*snoise(vec3(40.0*st, 6.0))
 + 0.0625*snoise(vec3(80.0*st, 8.0));
gl_FragColor =
 vec4(0.4*vec3(fbm) + 0.5, 1.0);

float d = length(fract(st*10.0) - 0.5);
float n = snoise(vec3(40.0*st, 0.0))
 + 0.5*snoise(vec3(80.0*st, 2.0));
float blotches = aastep(0.4, d + 0.1*n);
gl_FragColor = vec4(vec3(blotches), 1.0);

Figure 1.4. Examples of procedural patterns using Perlin noise. Texture coordi-
nates are either float s,t or vec2 st.

When GLSL was designed, a set of noise functions was included among
the built-in functions. Sadly, though, those functions have been left unim-
plemented in almost every OpenGL implementation to date, except for
some obsolete GPUs by 3DLabs. Native hardware support for noise on
mainstream GPUs may not appear for a good while yet, or indeed ever,
but there are software workarounds. Recent research [McEwan et al. 12]
has provided fast GLSL implementations of all common variants of Perlin

8 CONTENTS

noise which are easy to use and compatible with all current GLSL imple-
mentations, including OpenGL ES and WebGL. Implementation details are
in the article, and a short general presentation of Perlin noise in its classic
and modern variants can be found in [Gustavson 05]. Here, we will just
present a listing of 2D simplex noise, a modern variant of Perlin noise, to
show how short it is. Listing 1.3 is a stand-alone implementation of 2D
simplex noise ready to cut and paste into a shader – no setup or external
resources are needed. The function can be used in vertex shaders and frag-
ment shaders alike. Other variants of Perlin noise are in the code repository
for this book.

The different incarnations of Perlin noise are not exactly simple func-
tions, but they can still be evaluated at speeds of several billion fragments
per second on a modern GPU. Hardware and software development have
now reached a point where Perlin noise is very useful for real-time shading,
and we encourage everyone to use it.

1.5 Worley Noise

Another useful function is the cellular basis function or cellular noise intro-
duced by Steven Worley [Worley 96]. Often referred to as Worley noise,
this function can be used to generate a different class of patterns than
Perlin noise. The function is based on a set of irregularly positioned, but
reasonably evenly spaced feature points. The basic version of the function
returns the distance to the closest one of these feature points from a spec-
ified point in 2D or 3D. A more popular version returns the distances to
the two closest points, which allows more variation in the pattern design.
Worley’s original implementation makes commendable efforts to be cor-
rect, isotropic, and statistically well-behaved, but simplified variants have
been proposed over the years to cut some corners and make the function
less cumbersome to compute in a shader. It is still more complicated to
compute than Perlin noise, because it requires sorting of a number of can-
didates to determine which feature point is closest, but while Perlin noise
often requires several evaluations to generate an interesting pattern, a sin-
gle evaluation of Worley noise can be enough. Generally speaking, Worley
noise can be just as useful as Perlin noise, but for a different class of prob-
lems. Perlin noise is blurry and smooth by default, while Worley noise is
inherently spotty and jagged with distinct features.

We have not found any recent publications of Worley noise algorithms
for real-time use, but using concepts from our recent Perlin noise work and
ideas from previous software implementations, we created original imple-
mentations of a few simplified variants and put them in the code reposi-
tory for this chapter. Detailed notes on the implementation are presented

1. Procedural Textures in GLSL 9

// Description : Array - and textureless GLSL 2D simplex noise.
// Author : Ian McEwan , Ashima Arts. Version: 20110822
// Copyright (C) 2011 Ashima Arts. All rights reserved.
// Distributed under the MIT License. See LICENSE file.
// https :// github.com/ashima/webgl -noise

vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; }
vec2 mod289(vec2 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; }
vec3 permute(vec3 x) { return mod289 (((x*34.0) +1.0)*x); }

float snoise(vec2 v) {
const vec4 C = vec4 (0.211324865405187 , // (3.0- sqrt (3.0))/6.0

0.366025403784439 , // 0.5*(sqrt (3.0) -1.0)
-0.577350269189626 , // -1.0 + 2.0 * C.x
0.024390243902439); // 1.0 / 41.0

// First corner
vec2 i = floor(v + dot(v, C.yy));
vec2 x0 = v - i + dot(i, C.xx);
// Other corners
vec2 i1 = (x0.x > x0.y) ? vec2 (1.0, 0.0) : vec2 (0.0, 1.0);
vec4 x12 = x0.xyxy + C.xxzz;
x12.xy -= i1;
// Permutations
i = mod289(i); // Avoid truncation effects in permutation
vec3 p = permute(permute(i.y + vec3 (0.0, i1.y, 1.0))

+ i.x + vec3 (0.0, i1.x, 1.0));
vec3 m = max (0.5 - vec3(dot(x0,x0), dot(x12.xy,x12.xy),

dot(x12.zw ,x12.zw)), 0.0);
m = m*m; m = m*m;
// Gradients
vec3 x = 2.0 * fract(p * C.www) - 1.0;
vec3 h = abs(x) - 0.5;
vec3 a0 = x - floor(x + 0.5);
// Normalise gradients implicitly by scaling m
m *= 1.79284291400159 - 0.85373472095314 * (a0*a0 + h*h);
// Compute final noise value at P
vec3 g;
g.x = a0.x * x0.x + h.x * x0.y;
g.yz = a0.yz * x12.xz + h.yz * x12.yw;
return 130.0 * dot(m, g);

}

Listing 1.3. Complete, self-contained GLSL implementation of Perlin simplex
noise in 2D.

in [Gustavson 11]. Here, we just point to their existence and provide them
for use. The simplest version is presented in Listing 1.4.

Some patterns generated using Worley noise are shown in Figure 1.5,
along with the GLSL expressions that generate them. The right two spheres
in Figure 1.1 are examples of patterns generated by a single invocation of
Worley noise.

10 CONTENTS

// Cellular noise (" Worley noise") in 2D in GLSL , simplified version.
// Copyright (c) Stefan Gustavson 2011 -04 -19. All rights reserved.
// This code is released under the conditions of the MIT license.
// See LICENSE file for details.

vec4 permute(vec4 x) { return mod ((34.0 * x + 1.0) * x, 289.0); }

vec2 cellular2x2(vec2 P) {
const float K = 1.0/7.0;
const float K2 = 0.5/7.0;
const float jitter = 0.8; // jitter 1.0 makes F1 wrong more often

vec2 Pi = mod(floor(P), 289.0);
vec2 Pf = fract(P);
vec4 Pfx = Pf.x + vec4(-0.5, -1.5, -0.5, -1.5);
vec4 Pfy = Pf.y + vec4(-0.5, -0.5, -1.5, -1.5);
vec4 p = permute(Pi.x + vec4 (0.0, 1.0, 0.0, 1.0));
p = permute(p + Pi.y + vec4 (0.0, 0.0, 1.0, 1.0));
vec4 ox = mod(p, 7.0)*K+K2;
vec4 oy = mod(floor(p*K) ,7.0)*K+K2;
vec4 dx = Pfx + jitter*ox;
vec4 dy = Pfy + jitter*oy;
vec4 d = dx * dx + dy * dy; // distances squared
// Cheat and pick only F1 for the return value
d.xy = min(d.xy, d.zw);
d.x = min(d.x, d.y);
return d.xx; // F1 duplicated , F2 not computed

}
varying vec2 st; // Texture coordinates
void main(void) {

vec2 F = cellular2x2(st);
float n = 1.0 -1.5*F.x;
gl_FragColor = vec4(n.xxx , 1.0);

}

Listing 1.4. Complete, self-contained GLSL implementation of our simplified
version of Worley noise in 2D.

1.6 Animation

For procedural patterns, all properties of a fragment are computed anew
for each frame, which means that animation comes more or less for free.
It is only a matter of supplying the shader with a concept of time through
a uniform variable, and to make the pattern dependent on that variable
in some manner. Animation speed is independent of frame rate, and an-
imations do not need to loop, but can extend for arbitrary long periods
of time without repeating (within the constraints of numerical precision
if a floating-point value is used for timing). Animation literally adds a
new dimension to patterns, and the unrestricted animation that is possible
with procedural textures is a strong argument for using them. Perlin noise
is available in a 4D version, and its main use is to create textures where

1. Procedural Textures in GLSL 11

vec2 F = cellular(st*10.0);
gl_FragColor = vec4(vec3(F), 1.0);

vec2 F = cellular(st*10.0);
float rings = 1.0 - aastep(0.45, F.x)
 + aastep(0.55, F.x);
gl_FragColor = vec4(vec3(rings), 1.0);

vec2 F; // distances to features
vec4 d; // vectors to features
// F and d are ‘out’ parameters
cellular(8.0*st, F, d);
// Constant width lines, from
// the book “Advanced RenderMan”
float t = 0.05 *
(length(d.xy - d.zw)) / (F.x + F.y);
float f = F.y - F.x;
// Add small scale roughness
f += t * (0.5 - cellular(64.0*st).y);
gl_FragColor =
 vec4(vec3(aastep(t, f)), 1.0);

vec2 F = cellular(st*10.0);
float blobs = 1.0 - F.x*F.x;
gl_FragColor = vec4(vec3(blobs), 1.0);

vec2 F = cellular(st*10.0);
float facets = 0.1 + (F.y - F.x);
gl_FragColor = vec4(vec3(facets), 1.0);

Figure 1.5. Examples of procedural patterns using Worley noise. Texture coor-
dinates are vec2 st. For implementations of the cellular() functions, see the
code repository.

3D spatial coordinates and time together provide the texture coordinates
for an animated solid texture. The demo code that renders the scene in
Figure 1.1 animates the shaders simply by supplying the current time as a
uniform variable to GLSL and computing patterns that depend on it.

Unlike pre-rendered image sequences, procedural shader animation is
not restricted to simple, linear time dependencies. View-dependent changes
to a procedural texture can be used to affect the level of detail for the ren-
dering, so that for example bump maps or small scale features are computed
only in close-up views to save GPU resources. Procedural shading allows

12 CONTENTS

arbitrary interactive and dynamic changes to a surface, including extremely
complex computations like smoke and fluid simulations performed on the
GPU. Animated shaders have been used in software rendering for a long
time, but interactivity is unique to real-time shading, and a modern GPU
has considerably more computing power than a CPU. There are many fun
and wonderful things left to explore here.

1.7 Texture Images

Procedural texturing is all about removing the dependency on image based
textures, but there are applications where a hybrid approach is useful. A
texture image can be used for coarse detail to allow better artistic control,
and a procedural pattern can fill in the details in close-up views. This
includes not only surface properties in fragment shaders, but also displace-
ment maps in vertex shaders. Texture images can also be used as data for
further processing into a procedural pattern, like in the manner presented
in Chapter ??, or like in the halftoning example in Figure 1.6, rendered by
the shader in Listing 1.5. The bilinear texture interpolation is performed
explicitly in shader code. Hardware texture interpolation often has a lim-
ited fixed-point precision which is unsuitable for this kind of thresholding
under extreme magnifications.

Of course, some procedural patterns that are too cumbersome to com-
pute for each frame can be rendered to a texture and re-used between
frames. This approach maintains several of the advantages with using pro-
cedural patterns (flexibility, compactness, dynamic resolution), and it can
be a good compromise while we are waiting for complex procedural textur-
ing to be easily manageable in true real-time. Some of the advantages are
lost (memory bandwidth, analytic anisotropic anti-aliasing, rapid anima-
tions), but it does solve the problem of extreme minification. Minification
can be tricky to handle analytically, but is solved well by mipmapping of
an image-based texture.

1.8 Performance

Shader-capable hardware comes in many variations. An older laptop GPU
or a low cost, low power mobile GPU can typically run the same shader as a
brand new high end GPU for gaming entusiasts, but their raw performance
might differ by as much as 100 times. The usefulness of a certain procedu-
ral approach is therefore highly dependent on the application. GPUs get
faster all the time, and their internal architectures change between releases,
sometimes radically so. For this reason, absolute benchmarking is a rather

1. Procedural Textures in GLSL 13

Figure 1.6. A halftone shader using a texture image as input. The shader is listed
in Listing 1.5. Small random details become visible in close-up views (inset, lower
right). For distance views, the shader avoids aliasing by gradually blending out
the halftone pattern and blending in the plain RGB image (inset, lower left).

futile exercise in a general presentation such as this one. Instead, we have
measured the performance of a few of the example shaders from this chapter
on a selection of hardware. The results are summarized in Table 1.1. The
list should not be considered a representative or carefully picked selection
– it is just a few random GPUs of different models, neither top perform-
ing nor particularly new, and some of the shaders we have presented in
this chapter. The program to run this benchmark is included in the code
repository. The absolute figures depend on operating system and driver
version and should only be taken as a general indication of performance.

14 CONTENTS

The most useful information in the table is the relative performance within
one column: it is instructive to compare a constant color shader or a sin-
gle texture lookup with various procedural shaders on the same GPU. As
is apparent from the benchmarks, it is very hard to beat a single texture
lookup for raw speed, not least because most current GPUs are specifically
designed to have a high texture bandwidth. However, reasonably complex
procedural textures can run at perfectly useful speeds, and they become
more competitive when the limiting factor for GPU performance is memory
bandwidth. Procedural methods can execute in parallel to memory reads,
and add to the visual complexity of a textured surface without necessarily
slowing things down. For the foreseeable future, GPUs will continue to
have a problem with memory bandwidth, and their computational power
will keep increasing. There is certainly lots of room to experiment here.

NVIDIA AMD AMD NVIDIA

Shader 9600M HD6310 HD4850 GTX260

Constant color 422 430 2,721 3,610

Single texture 412 414 2,718 3,610

Dots (Fig 1.2, lower right) 360 355 2,720 3,420

Perlin noise (Fig 1.4, top left) 63 97 1,042 697

5x Perlin (Fig 1.4, bottom left) 11 23 271 146

Worley noise (Fig 1.5, top left) 82 116 1,192 787

Worley tiles (Fig 1.5, bottom) 26 51 580 345

Halftone (Fig 1.6) 34 52 597 373

Table 1.1. Benchmarks for a few example shaders. Numbers are in millions of
fragments per second. NVIDIA 9600M is an old laptop GPU, AMD HD6310
is a budget laptop GPU. AMD HD4850 and NVIDIA GTX260 were mid-range
desktop GPUs in 2011. High-end GPUs of 2011 perform several times better.

1.9 Conclusion

The aim of this chapter was to demonstrate that modern shader-capable
GPUs are mature enough to render procedural patterns at fully interactive
speeds, and that GLSL is a good language to write procedural shaders very
similar to the ones that have become standard tools in off-line rendering
over the past two decades. In a content production process that includes
procedural textures, some of the visuals need to be created using math and
a programming language as tools for creative visual expression, and this
requires a slightly different kind of talent than what it takes to be a good
visual artist with traditional image editing tools. Also, the GPU is still

BIBLIOGRAPHY 15

a limited resource, and care needs to be taken not to overwhelm it with
overly complex shaders. Procedural texturing is not yet a wise choice in
every situation. However, there are situations where a procedural pattern
simply does the job better than a traditional, image-based texture, and
the tools and the required processing power are now available to do it in
real-time. Now is a good time to start writing procedural shaders in GLSL.

Bibliography

[Apodaca and Gritz 99] Anthony Apodaca and Larry Gritz. Advanced
RenderMan: Creating GCI for Motion Pictures. Morgan Kaufmann,
1999.

[Ebert et al. 03] David Ebert, Kenton Musgrave, Darwyn Peachey, Ken
Perlin, and Steve Worley. Texturing and Modeling: A Procedural Ap-
proach. Morgan Kaufmann, 2003.

[Gustavson 05] Stefan Gustavson. “Simplex Noise Demystified.” http:
//www.itn.liu.se/∼stegu/simplexnoise/simplexnoise.pdf, March 22,
2005.

[Gustavson 11] Stefan Gustavson. “Cellular Noise in GLSL: Im-
plementation Notes.” http://www.itn.liu.se/∼stegu/GLSL-cellular/
GLSL-cellular-notes.pdf, April 19, 2011.

[McEwan et al. 12] Ian McEwan, David Sheets, Stefan Gustavson, and
Mark Richardson. “Efficient computational noise in GLSL.” Jour-
nal of Graphics, GPU and Game Tools 16:1 (2012), (to appear).

[Perlin 85] Ken Perlin. “An Image Synthesizer.” Proceedings of ACM Sig-
graph 85 19:3 (1985), 287–296.

[Worley 96] Steven Worley. “A Cellular Texture Basis Function.” In SIG-
GRAPH ’96 Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pp. 291–293, 1996.

16 BIBLIOGRAPHY

uniform sampler2D teximage;
uniform vec2 dims; // Texture dimensions (width and height)
varying vec2 one; // 1.0/ dims from vertex shader
varying vec2 st; // 2D texture coordinates

// Explicit bilinear lookup to circumvent imprecise interpolation.
// In GLSL 1.30 and above , 'dims ' can be fetched by textureSize ().
vec4 texture2D_bilinear(sampler2D tex , vec2 st, vec2 dims , vec2 one) {

vec2 uv = st * dims;
vec2 uv00 = floor(uv - vec2 (0.5)); // Lower left of lower left texel
vec2 uvlerp = uv - uv00 - vec2 (0.5); // Texel -local blends [0,1]
vec2 st00 = (uv00 + vec2 (0.5)) * one;
vec4 texel00 = texture2D(tex , st00);
vec4 texel10 = texture2D(tex , st00 + vec2(one.x, 0.0));
vec4 texel01 = texture2D(tex , st00 + vec2 (0.0, one.y));
vec4 texel11 = texture2D(tex , st00 + one);
vec4 texel0 = mix(texel00 , texel01 , uvlerp.y);
vec4 texel1 = mix(texel10 , texel11 , uvlerp.y);
return mix(texel0 , texel1 , uvlerp.x);

}

void main(void) {
vec3 rgb = texture2D_bilinear(teximage , st , dims , one).rgb;
float n = 0.1* snoise(st *200.0);
n += 0.05* snoise(st *400.0);
n += 0.025* snoise(st *800.0); // Fractal noise , 3 octaves
vec4 cmyk;
cmyk.xyz = 1.0 - rgb; // Rough CMY conversion
cmyk.w = min(cmyk.x, min(cmyk.y, cmyk.z)); // Create K
cmyk.xyz -= cmyk.w; // Subtract K amount from CMY

// CMYK halftone screens , in angles 15/ -15/0/45 degrees
vec2 Cuv = 50.0* mat2 (0.966 , -0.259, 0.259, 0.966)*st;
Cuv = fract(Cuv) - 0.5;
float c = aastep (0.0, sqrt(cmyk.x) - 2.0* length(Cuv) + n);
vec2 Muv = 50.0* mat2 (0.966 , 0.259, -0.259, 0.966)*st;
Muv = fract(Muv) - 0.5;
float m = aastep (0.0, sqrt(cmyk.y) - 2.0* length(Muv) + n);
vec2 Yuv = 50.0*st; // 0 deg
Yuv = fract(Yuv) - 0.5;
float y = aastep (0.0, sqrt(cmyk.z) -2.0* length(Yuv)+n);
vec2 Kuv = 50.0* mat2 (0.707 , -0.707, 0.707, 0.707)*st;
Kuv = fract(Kuv) - 0.5;
float k = aastep (0.0, sqrt(cmyk.w) - 2.0* length(Kuv) + n);

vec3 rgbscreen = 1.0 - vec3(c, m, y);
rgbscreen = mix(rgbscreen , vec3 (0.0), 0.7*k + 0.5*n);
vec2 fw = fwidth(st);
float blend = smoothstep (0.7, 1.4, 200.0* max(fw.s, fw.t));
gl_FragColor = vec4(mix(rgbscreen , rgb , blend), 1.0);

}

Listing 1.5. The fragment shader to generate the halftone pattern in Figure 1.6.

Index

anti-aliased step function, 6
automatic derivatives, 5

cellular noise, 8

gradient, 5

level of detail, 11

Perlin noise, 6
procedural textures, 1

simplex noise, 8
solid textures, 2

Worley noise, 8

17

