
OpenGL and GPU programming
– a mental model for programmers

Stefan Gustavson (stegu@itn.liu.se) 2015-04-27
It could be argued that a good graphics API should hide the low level details of how a GPU works,
to relieve programmers from the complexity of the implementation and allow them to focus on
higher level tasks. Many APIs for 3D graphics try to do exactly that, with varying degrees of
success, but there are still popular and very useful APIs that leave the low level details fully
exposed. One such API is OpenGL. Programming in OpenGL requires considerable insight into
how 3D graphics is rendered on a modern GPU, and programmers need to know quite a lot about
hardware issues to make good use of OpenGL. The advantage is that OpenGL allows you to do
anything you want that is within the capabilities of the hardware, and to do it in the most efficient
manner. More user friendly APIs make it easier to do simple stuff, but they can also make it
unnecessarily hard, even impossible, to do exactly what you want. We think programming at the
“raw” OpenGL level provides a good understanding of what a modern GPU can do, and looking
back, the single 3D graphics API that has remained relevant over the past decades is OpenGL. It
may not be perfect, but it's good, stable, useful, fast and available on many different platforms.

OpenGL can be confusing, and textbooks often fail to make a clear enough connection between
code and the GPU, between software and hardware. This document is an attempt to do just that.
Using a mental model of the GPU, we hope to shed some light on how OpenGL commands and data
structures connect and interact with the hardware. The model of the GPU presented here takes a few
shortcuts and hides some details, but it is reasonably simple and easy to understand, and it's a close
enough approximation to be a useful mental model for a programmer.

A mental model of a modern GPU. The rest of this document will explain the details.

Vertex
arrays

Textures

Frame
buffer

Depth
buffer

Vertex
processing

Fragment
processing

In
te

rp
ol

at
io

n

uniform uniform

attribute

out outin

Shader
programs

rendering
commands

big data

small data

GPU memory

Big data is pre-loaded to GPU memory
OpenGL is considered a “direct rendering” framework, meaning that each triangle is rendered by
direct request from the programmer, in the order that the rendering commands are issued. However,
this does not mean that all data is sent to the GPU for every frame. The most common and most
efficient way of rendering with OpenGL is to pre-load bulky data to the GPU memory and try to
keep it there between frames. Such bulky data are vertex arrays, texture images and shader
programs, all of which are uploaded to GPU memory by separate commands, identified by an
integer ID number that is assigned at the time of the data upload, and later used for rendering by
referring to those ID numbers. ID numbers are optionally assigned also for render buffers. With
proper setup, rendering becomes a matter of changing only small things like transformation
matrices between frames, and sending rendering commands with ID numbers to the GPU to render
data that is already stored in GPU memory. This makes such rendering fast and efficient, relieving
the CPU from sending lots of data to the GPU each frame and leaving it mostly free to perform
other tasks.

The rendering pipeline is programmable
Since a few years back, all processing of vertex and pixel data in a GPU is programmable by the use
of shader programs. Shader programs are written in a special shader language and compiled for the
GPU at hand. OpenGL accepts shaders written as text in the reasonably high level language GLSL,
“OpenGL Shading Language”. The OpenGL graphics driver (the CPU portion of OpenGL)
compiles the shader from GLSL source text to a binary shader program that can be run by the
particular GPU that is installed in the computer. This on-the-fly compilation makes OpenGL shaders
very portable and scalable, and also forward compatible in the sense that even old shader programs
will be able take advantage of new and improved GPUs when they are run on such systems.
Compilation of a GLSL shader is quick, but it's performed by the CPU, and it can't be done for
every frame. Shaders are pre-compiled and uploaded to the GPU before rendering, and activated
during rendering by referring to their ID numbers.

Small data is sent to the shaders
Large chunks of data should be pre-loaded in GPU memory whenever possible, but small data can
easily be sent to the GPU for each frame during rendering. One way of doing this is by declaring
uniform variables in shaders. Such variables can be set from the CPU, and they can be of any type
supported by GLSL: transformation matrices, vectors and scalar values. Things that are typically
specified as uniform variables are transformation matrices, information on light sources for shaders
that compute lighting, color values and other material parameters, and time dependent information
for shader-based animation.

Output is sent to render buffers
All rendered output is sent to render buffers in GPU memory. The traditional and most common
format for these render buffers is one four-channel RGBA with 8 bits per channel, and one Z buffer
with 24 or 32 bits per channel, but there are many other useful choices for the format, and output
can actually be sent to several buffers at a time. We will not go into details on how this is done, but
we will mention one important implication: because the rendered output resides in GPU memory, a
rendered image can be saved and used as a texture in a second rendering pass. This makes it
possible to perform shadow mapping and to perform 2D image effects by post-processing. Modern
OpenGL applications make heavy use of such multi-pass rendering.

A brief introduction to GLSL
The shader programming language in OpenGL, GLSL, was created for the single purpose of writing
short programs to process vertex and pixel data for graphics. Because of this, it is a fairly small and
simple language that is reasonably easy to learn. Its syntax is similar to that of C, C++ and Java, but
GLSL has data types, operators and functions that are tailored to the task at hand. Here, we will not
present an overview of the entire language. There are proper books and more ambitious tutorials for
that, and lots of online documentation. Instead, we will present the basics by showing a few
examples of simple shaders and commenting on them.

A complete shader program must contain at least two shaders: one vertex shader and one fragment
shader. The vertex shader is responsible for transformation of the vertex data to make the triangles
appear in the right place on the screen, and the fragment shader is responsible for setting the color
of each pixel. The smallest useful vertex shader and the smallest useful fragment shader would be
the following pair:
Vertex shader
#version 330
layout(location = 0) in vec3 Position;;
void main() {
 gl_Position = vec4(Position, 1.0);;
}

Fragment shader
#version 330
out vec4 Color;;
void main() {
 Color = vec4(1.0, 1.0, 1.0, 1.0);;
}

This shader pair results in triangles being painted at exactly the (x,y,z) coordinates specified in the
vertex array without any transformations, and every pixel is painted in a solid white color. While
not terribly interesting, it's still a perfectly valid mode of rendering.

The first line, #version 330, tells the GLSL compiler that we are using version 3.30 of the
language. This line is a required part of any GLSL shader. Different versions of OpenGL treat the
input and output a little differently, and there are also some differences in what data types and
functions you can use in each version. Between versions 3.30 and above the differences are fairly
small, but version 3.30 made some significant changes compared to previous versions. We do not
recommend using earlier versions if you have a choice, but sometimes you don't have that choice.
The most notable example is WebGL, which as of this writing (April 2015) supports only an older
and less capable version of GLSL. You will also find plenty of examples using the older syntax.
Books and online resources have not always kept up with the recent rapid development.

Note that the input to the vertex shader (in vec3 Position) is a vertex attribute, data contained in
the vertex array. The vertex shader needs to know the layout of the data in the vertex array, and
conversely, the vertex array needs to be specified in the format that the vertex shader assumes. This
is a tight coupling between the data format and the shader program that is somewhat undesirable,
but OpenGL is focused on efficiency, not flexibility, and allowing any leeway in terms of data
format or data layout would require the GPU to spend considerable time reshuffling data or
converting between data types during rendering.

The only required output from the vertex shader is that you should set the pre-declared variable
gl_Position (a 4-element vec4) to the desired position of the processed vertex. Because we have a
3-element input vector vec3 Position from our vertex array, we add a fourth component with the
constant value 1.0 to make it a homogeneous coordinate vector, but other than that, the coordinate
is passed through unmodified.

The output from the fragment shader is a 4-element vector: vec4 Color. For convenience, OpenGL
associates the first output variable (in this case the only one) with the RGBA output that is sent to
the render buffer. This is the most common way of storing the output. You need to connect your
output variables explicitly to render buffers only if you want to render to multiple buffers, and we
won't go into those details here.

A more interesting vertex shader would need to perform some kind of transformation, and that can
be accomplished by a 4x4 matrix:
Vertex shader
#version 330
layout(location = 0) in vec3 Position;;
uniform mat4 M;;
void main() {
 gl_Position = M * vec4(Position, 1.0);;
}

The fragment shader can remain the same for now. This vertex shader uses a single 4x4 matrix mat4
M, but one matrix is enough to perform any linear transformation of the vertex positions, and also a
perspective transformation by using homogeneous coordinates. If the fourth component of the
output vector (gl_Position) is anything else than 1.0, the vector is normalized after the vertex
shader to perform the perspective division. This division is done in a fixed function step between
the vertex shader and the fragment shader. Other fixed functions include the splitting of each
triangle into pixels (samples, fragments), and the interpolation of output variables across the surface
of each triangle.

The matrix is specified as a uniform variable, and it is set before the shader is used by calling
OpenGL functions in the CPU program. The CPU needs to know the name of the variable in the
GLSL shader code to find its address and set it to a value. This is an undesirably strong connection
between the CPU code and the GPU shader code, but once again, GLSL was designed for speed,
which caused some compromises in its design and some convenience to be sacrificed.

A more interesting fragment shader requires at least some data to be sent to it from the outside. The
color can be specified by a uniform variable, but that would still paint a constant color for all pixels.
To have varying values across a triangle, you specify vertex attributes and send them along from the
vertex shader to the fragment shader. Values are interpolated across the surface of the triangle. Let's
add vertex colors to our vertex array, and specify them as a second input to our vertex shader. We
also need to pass data along to the fragment shader to have them interpolated. This is performed by
setting an out variable in the vertex shader and reading a corresponding in variable in the fragment
shader.
Vertex shader
#version 330
layout(location = 0) in vec3 Position;;
layout(location = 1) in vec3 vertexColor;;
uniform mat4 M;;
out vec3 interpolatedColor;;
void main() {
 interpolatedColor = vertexColor;;
 gl_Position = M * vec4(Position, 1.0);;
}
Fragment shader
#version 330
in vec3 interpolatedColor;;
out vec4 Color;;
void main() {
 Color = vec4(interpolatedColor, 1.0);;
}

Variables specified as out in the vertex shader must be exactly matched by in variables in the
fragment shader: they must have the same type and the same name. Any mismatch between out and
in variables in the vertex and fragment shaders results in a compilation error.

Some more details of GLSL deserve to be mentioned. Some matrix and vector data types were
introduced above without much explanation. As you can see from the example, a matrix
multiplication can be performed by the multiplication operator, which is very convenient. This
requires that the dimensions of the matrix and the vector match: a 4x4 mat4 can be multiplied by a
4x1 vec4. A mat4 can also be multiplied with a mat4 to create composite transformations.

The most important and most widely supported numeric data types in GLSL are the following. For a
full list, refer to the documentation for the version of GLSL you are using.
float int // scalar values
vec2 vec3 vec4 // floating point vectors of 2, 3 and 4 values
ivec2 ivec3 ivec4 // integer vectors
mat2 mat3 mat4 // floating point matrices: 2x2, 3x3 and 4x4

Vector types and scalar types can be mixed in mathematical operations. This has the effect of
performing the same operation on each component of the vector. Performing operations between
vectors of the same length results in operations being performed between corresponding elements.

Other than matrix multiplications, most familiar operations from 3D vector math are supported. A
scalar product (“dot product”) between two vectors of the same length is performed by the function
dot(), and a vector product (“cross product”) between two 3D vectors is performed by the function
cross(). The length of a vector (the square root of the sum of the squares of its components) is
computed by length(), and a vector can be normalized to unit length by the function
normalize().

Individual components of a vector can be set and read by using a “dot notation”. The first two
components of a 3-element vector vec3 Position can be written Position.xy, and if you want to
swap the order of x and y you can write Position.yx. Lots of swapping and duplication operations
between components can be written like this, and the dot notation is often somewhat abused by
programmers, making some GLSL programs hard to read. The dot notation is often called
“swizzling”. It's a nonsense name, but it's useful to know. The components can be referred to by the
letters xyzw, but also by rgba to make it easier to read operations on color values. A third option is
stpq, which is provided to make it possible to more clearly separate texture coordinates (often
denoted s,t) from vertex coordinates.

To make a longer vector from one or more shorter vectors, you use a constructor and supply enough
data to fill all elements of the new vector. To make a shorter vector from a longer vector, you select
the components you want by a dot notation:
vec3 Position = vec3(1.0, 2.0, 3.0);;
vec4 hPosition = vec4(Position, 1.0);;
vec2 xyPosition = Position.xy;;

And, finally, the dot notation can be used to the left of the assignment operator as well:
Position.z = 0.0;;
Position.xy = vec2(0.0, 1.0);;

For a more thorough introduction to GLSL, there are other sources than this short presentation, but
hopefully this is enough to get you started. You will now be able to read and learn from examples,
and you are better prepared to read the official documentation to learn more.

