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It could be argued that a good graphics API should hide the low level details of how a GPU works, 
to relieve programmers from the complexity of the implementation and allow them to focus on 
higher level tasks. Many APIs for 3D graphics try to do exactly that, with varying degrees of 
success, but there are still popular and very useful APIs that leave the low level details fully 
exposed. One such API is OpenGL. Programming in OpenGL requires considerable insight into 
how 3D graphics is rendered on a modern GPU, and programmers need to know quite a lot about 
hardware issues to make good use of OpenGL. The advantage is that OpenGL allows you to do 
anything you want that is within the capabilities of the hardware, and to do it in the most efficient 
manner. More user friendly APIs make it easier to do simple stuff, but they can also make it 
unnecessarily hard, even impossible, to do exactly what you want. We think programming at the 
“raw” OpenGL level provides a good understanding of what a modern GPU can do, and looking 
back, the single 3D graphics API that has remained relevant over the past decades is OpenGL. It 
may not be perfect, but it's good, stable, useful, fast and available on many different platforms.

OpenGL can be confusing, and textbooks often fail to make a clear enough connection between 
code and the GPU, between software and hardware. This document is an attempt to do just that. 
Using a mental model of the GPU, we hope to shed some light on how OpenGL commands and data 
structures connect and interact with the hardware. The model of the GPU presented here takes a few 
shortcuts and hides some details, but it is reasonably simple and easy to understand, and it's a close 
enough approximation to be a useful mental model for a programmer.

A mental model of a modern GPU. The rest of this document will explain the details.
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Big data is pre-loaded to GPU memory
OpenGL is considered a “direct rendering” framework, meaning that each triangle is rendered by 
direct request from the programmer, in the order that the rendering commands are issued. However, 
this does not mean that all data is sent to the GPU for every frame. The most common and most 
efficient way of rendering with OpenGL is to pre-load bulky data to the GPU memory and try to 
keep it there between frames. Such bulky data are vertex arrays, texture images and shader 
programs, all of which are uploaded to GPU memory by separate commands, identified by an 
integer ID number that is assigned at the time of the data upload, and later used for rendering by 
referring to those ID numbers. ID numbers are optionally assigned also for render buffers. With 
proper setup, rendering becomes a matter of changing only small things like transformation 
matrices between frames, and sending rendering commands with ID numbers to the GPU to render 
data that is already stored in GPU memory. This makes such rendering fast and efficient, relieving 
the CPU from sending lots of data to the GPU each frame and leaving it mostly free to perform 
other tasks.

The rendering pipeline is programmable
Since a few years back, all processing of vertex and pixel data in a GPU is programmable by the use 
of shader programs. Shader programs are written in a special shader language and compiled for the 
GPU at hand. OpenGL accepts shaders written as text in the reasonably high level language GLSL, 
“OpenGL Shading Language”. The OpenGL graphics driver (the CPU portion of OpenGL) 
compiles the shader from GLSL source text to a binary shader program that can be run by the 
particular GPU that is installed in the computer. This on-the-fly compilation makes OpenGL shaders 
very portable and scalable, and also forward compatible in the sense that even old shader programs 
will be able take advantage of new and improved GPUs when they are run on such systems. 
Compilation of a GLSL shader is quick, but it's performed by the CPU, and it can't be done for 
every frame. Shaders are pre-compiled and uploaded to the GPU before rendering, and activated 
during rendering by referring to their ID numbers.

Small data is sent to the shaders
Large chunks of data should be pre-loaded in GPU memory whenever possible, but small data can 
easily be sent to the GPU for each frame during rendering. One way of doing this is by declaring 
uniform variables in shaders. Such variables can be set from the CPU, and they can be of any type 
supported by GLSL: transformation matrices, vectors and scalar values. Things that are typically 
specified as uniform variables are transformation matrices, information on light sources for shaders 
that compute lighting, color values and other material parameters, and time dependent information 
for shader-based animation.

Output is sent to render buffers
All rendered output is sent to render buffers in GPU memory. The traditional and most common 
format for these render buffers is one four-channel RGBA with 8 bits per channel, and one Z buffer 
with 24 or 32 bits per channel, but there are many other useful choices for the format, and output 
can actually be sent to several buffers at a time. We will not go into details on how this is done, but 
we will mention one important implication: because the rendered output resides in GPU memory, a 
rendered image can be saved and used as a texture in a second rendering pass. This makes it 
possible to perform shadow mapping and to perform 2D image effects by post-processing. Modern 
OpenGL applications make heavy use of such multi-pass rendering.



A brief introduction to GLSL
The shader programming language in OpenGL, GLSL, was created for the single purpose of writing 
short programs to process vertex and pixel data for graphics. Because of this, it is a fairly small and 
simple language that is reasonably easy to learn. Its syntax is similar to that of C, C++ and Java, but 
GLSL has data types, operators and functions that are tailored to the task at hand. Here, we will not 
present an overview of the entire language. There are proper books and more ambitious tutorials for 
that, and lots of online documentation. Instead, we will present the basics by showing a few 
examples of simple shaders and commenting on them.

A complete shader program must contain at least two shaders: one vertex shader and one fragment  
shader. The vertex shader is responsible for transformation of the vertex data to make the triangles 
appear in the right place on the screen, and the fragment shader is responsible for setting the color 
of each pixel. The smallest useful vertex shader and the smallest useful fragment shader would be 
the following pair:
Vertex shader
#version  330
layout(location  =  0)  in  vec3  Position;;
void  main()  {
    gl_Position  =  vec4(Position,  1.0);;
}

Fragment shader
#version  330
out  vec4  Color;;
void  main()  {
    Color  =  vec4(1.0,  1.0,  1.0,  1.0);;
}

This shader pair results in triangles being painted at exactly the (x,y,z) coordinates specified in the 
vertex array without any transformations, and every pixel is painted in a solid white color. While 
not terribly interesting, it's still a perfectly valid mode of rendering.

The first line,  #version  330, tells the GLSL compiler that we are using version 3.30 of the 
language. This line is a required part of any GLSL shader. Different versions of OpenGL treat the 
input and output a little differently, and there are also some differences in what data types and 
functions you can use in each version. Between versions 3.30 and above the differences are fairly 
small, but version 3.30 made some significant changes compared to previous versions. We do not 
recommend using earlier versions if you have a choice, but sometimes you don't have that choice. 
The most notable example is WebGL, which as of this writing (April 2015) supports only an older 
and less capable version of GLSL. You will also find plenty of examples using the older syntax. 
Books and online resources have not always kept up with the recent rapid development.

Note that the input to the vertex shader (in  vec3  Position) is a vertex attribute, data contained in 
the vertex array. The vertex shader needs to know the layout of the data in the vertex array, and 
conversely, the vertex array needs to be specified in the format that the vertex shader assumes. This 
is a tight coupling between the data format and the shader program that is somewhat undesirable, 
but OpenGL is focused on efficiency, not flexibility, and allowing any leeway in terms of data 
format or data layout would require the GPU to spend considerable time reshuffling data or 
converting between data types during rendering.

The only required output from the vertex shader is that you should set the pre-declared variable 
gl_Position (a 4-element vec4) to the desired position of the processed vertex. Because we have a 
3-element input vector vec3  Position from our vertex array, we add a fourth component with the 
constant value 1.0 to make it a homogeneous coordinate vector, but other than that, the coordinate 
is passed through unmodified.



The output from the fragment shader is a 4-element vector: vec4  Color. For convenience, OpenGL 
associates the first output variable (in this case the only one) with the RGBA output that is sent to 
the render buffer. This is the most common way of storing the output. You need to connect your 
output variables explicitly to render buffers only if you want to render to multiple buffers, and we 
won't go into those details here.

A more interesting vertex shader would need to perform some kind of transformation, and that can 
be accomplished by a 4x4 matrix:
Vertex shader
#version  330
layout(location  =  0)  in  vec3  Position;;
uniform  mat4  M;;
void  main()  {
    gl_Position  =  M  *  vec4(Position,  1.0);;
}

The fragment shader can remain the same for now. This vertex shader uses a single 4x4 matrix mat4  
M, but one matrix is enough to perform any linear transformation of the vertex positions, and also a 
perspective transformation by using homogeneous coordinates. If the fourth component of the 
output vector (gl_Position) is anything else than 1.0, the vector is normalized after the vertex 
shader to perform the perspective division. This division is done in a fixed function step between 
the vertex shader and the fragment shader. Other fixed functions include the splitting of each 
triangle into pixels (samples, fragments), and the interpolation of output variables across the surface 
of each triangle.

The matrix is specified as a uniform variable, and it is set before the shader is used by calling 
OpenGL functions in the CPU program. The CPU needs to know the name of the variable in the 
GLSL shader code to find its address and set it to a value. This is an undesirably strong connection 
between the CPU code and the GPU shader code, but once again, GLSL was designed for speed, 
which caused some compromises in its design and some convenience to be sacrificed.

A more interesting fragment shader requires at least some data to be sent to it from the outside. The 
color can be specified by a uniform variable, but that would still paint a constant color for all pixels. 
To have varying values across a triangle, you specify vertex attributes and send them along from the 
vertex shader to the fragment shader. Values are interpolated across the surface of the triangle. Let's 
add vertex colors to our vertex array, and specify them as a second input to our vertex shader. We 
also need to pass data along to the fragment shader to have them interpolated. This is performed by 
setting an out variable in the vertex shader and reading a corresponding in variable in the fragment 
shader.
Vertex shader
#version  330
layout(location  =  0)  in  vec3  Position;;
layout(location  =  1)  in  vec3  vertexColor;;
uniform  mat4  M;;
out  vec3  interpolatedColor;;
void  main()  {
    interpolatedColor  =  vertexColor;;
    gl_Position  =  M  *  vec4(Position,  1.0);;
}
Fragment shader
#version  330
in  vec3  interpolatedColor;;
out  vec4  Color;;
void  main()  {
    Color  =  vec4(interpolatedColor,  1.0);;
}



Variables specified as out in the vertex shader must be exactly matched by in variables in the 
fragment shader: they must have the same type and the same name. Any mismatch between out and 
in variables in the vertex and fragment shaders results in a compilation error.

Some more details of GLSL deserve to be mentioned. Some matrix and vector data types were 
introduced above without much explanation. As you can see from the example, a matrix 
multiplication can be performed by the multiplication operator, which is very convenient. This 
requires that the dimensions of the matrix and the vector match: a 4x4 mat4 can be multiplied by a 
4x1 vec4. A mat4 can also be multiplied with a mat4 to create composite transformations.

The most important and most widely supported numeric data types in GLSL are the following. For a 
full list, refer to the documentation for the version of GLSL you are using.
float  int                    //  scalar  values
vec2  vec3  vec4          //  floating  point  vectors  of  2,  3  and  4  values
ivec2  ivec3  ivec4    //  integer  vectors
mat2  mat3  mat4          //  floating  point  matrices:  2x2,  3x3  and  4x4

Vector types and scalar types can be mixed in mathematical operations. This has the effect of 
performing the same operation on each component of the vector. Performing operations between 
vectors of the same length results in operations being performed between corresponding elements.

Other than matrix multiplications, most familiar operations from 3D vector math are supported. A 
scalar product (“dot product”) between two vectors of the same length is performed by the function 
dot(), and a vector product (“cross product”) between two 3D vectors is performed by the function 
cross(). The length of a vector (the square root of the sum of the squares of its components) is 
computed by length(), and a vector can be normalized to unit length by the function 
normalize().

Individual components of a vector can be set and read by using a “dot notation”. The first two 
components of a 3-element vector vec3  Position can be written Position.xy, and if you want to 
swap the order of x and y you can write Position.yx. Lots of swapping and duplication operations 
between components can be written like this, and the dot notation is often somewhat abused by 
programmers, making some GLSL programs hard to read. The dot notation is often called 
“swizzling”. It's a nonsense name, but it's useful to know. The components can be referred to by the 
letters xyzw, but also by rgba to make it easier to read operations on color values. A third option is 
stpq, which is provided to make it possible to more clearly separate texture coordinates (often 
denoted s,t) from vertex coordinates.

To make a longer vector from one or more shorter vectors, you use a constructor and supply enough 
data to fill all elements of the new vector. To make a shorter vector from a longer vector, you select 
the components you want by a dot notation:
vec3  Position  =  vec3(1.0,  2.0,  3.0);;
vec4  hPosition  =  vec4(Position,  1.0);;
vec2  xyPosition  =  Position.xy;;

And, finally, the dot notation can be used to the left of the assignment operator as well:
Position.z  =  0.0;;
Position.xy  =  vec2(0.0,  1.0);;

For a more thorough introduction to GLSL, there are other sources than this short presentation, but 
hopefully this is enough to get you started. You will now be able to read and learn from examples, 
and you are better prepared to read the official documentation to learn more.


