### Configuration and Planning of the Remote Tower Modules in a Remote Tower Center

Tobias Andersson Granberg, Peter Axelsson, Jonas Petersson, Tatiana Polishchuk, Valentin Polishchuk, Christiane Schmidt



### **ATS today**

- Local tower situated at the aerodrome

→ maintenance cost

- ATCO(s) responsible for maneuvering and taxying
  *staffing, (re)training costs*
- Out-of-the-window views + radars (PRS/SSR/SMR)

### **Remotely Operated Towers (ROT)**



- replace local tower with cameras and sensors
- save on staff and building maintenance
- provide ATS remotely to small aerodromes

### **Remote Tower Center**



- contains Remote Tower
  Modules (RTMs)
- RTM contains several CWPs
  + optional WS and APP
- unified HMI

#### ROT

- within SESAR
- in Sweden
  - run by SAAB and LFV
  - RTC in Sundsvall is currently evaluated
- similar programs in Germany et al.
- Next: large-scale tests (3 aerodromes per module?)

### Prior work: Safety, perception, usability

- Möhlenbrink, C., Rudolph M., Schmidt M. Fürstenau N., Wahrnehmungsexperimente im RApTOr DemonstratorRTO-Workshop, Braunschweig, 2007
- Ellis, S.R., Liston, D., Visual Features Involving Motion Seen from Airport Control Towers. IFAC 2007
- Papenfuß, A., Friedrich, M., Möhlenbrink, C., Rudolph, M., Schier, S., Schmidt, M., Fürstenau, N.. Highfidelity Tower Simulation for operational validity of Remote Tower Control. IFAC 2010
- Möhlenbrink, C., Friedrich, M., Papenfuß, A., Rudolph, M., Schmidt, M., Morlang, F., & Fürstenau, N. Highfidelity human-in-the-loop simulations as one step towards remote control of regional airports: A preliminary study. ICRAT 2010
- Wittbrodt, N., Gross, A., Thüring, M. Challenges for the Communication Environment and Communication Concept for Remote Airport Control Centres. IFAC 2010
- Meyer, L., Vogel, M., Fricke, H. Functional Hazard Analysis of Virtual Towers. IFAC 2010
- Oehme, A., & Schulz-Rueckert, D. Distant Air Traffic Control for Regional Airports. IFAC 2010
- Moehlenbrink, C., Papenfuss, A., and Jakobi, J., The Role of Workload for Work Organisation in a Remote Tower Control Center. ATM-Seminar 2011

### This paper

**Optimization:** minimize # of modules while serving ATC demand and not overloading ATCOs

### **RTM** assignment problem (1)

Assumptions and limitations:

- ROT components are implemented and available
- No emphasis on technical aspects
- Safe and reliable system
- Aerodromes are suitable for RTC operation
- Precise controllers schedule is out of the scope

## **RTM assignment problem (2)**

Input:

- Aerodromes
  - Periods of operation per aerodrome (open hrs)
    - which aerodromes are active in each period
  - Number of movements per aerodrome per period
- RTC modules (RTMs)
  - Max number of movements per RTM per period
  - Max number of aerodromes per RTM

*Output:* aerodromes-to-RTMs assignment

### **RTM** assignment problem (3)

*Objective:* minimizing the number of modules

Constraints:

- number of aerodromes per module  $\leq 3$
- number of movements per module per period  $\leq 6$
- each aerodrome assigned to only 1 module
- all movements are handled
- all operating hours are covered

### **RTM** assignment problem (4)

- Bin Packing problem
- NP-hard

- Solve small instances using optimization software (AMPL, CPLEX)

#### Integer programming (IP) formulation: variables

mov<sub>ijk</sub> = # of movements handled by RTM i at aerodrome j during period k

$$\begin{array}{ll} \min & \sum_{i=1}^{r} \mathsf{RTM}_{i} \\ \text{s.t.} & \sum_{j=1}^{n} \mathsf{mov}_{ijk} \leq \mathsf{maxMov} & \forall i.k \\ & \sum_{j=1}^{n} \mathsf{AD}_{ij} \leq \mathsf{maxAD} & \forall i \\ & \sum_{i=1}^{r} \mathsf{AD}_{ij} \leq 1 & \forall j \\ & \sum_{i=1}^{r} \mathsf{period}_{ijk} \leq 1 & \forall j,k \\ & \mathsf{mov}_{ijk} \leq \mathsf{period}_{ijk} \times \mathsf{maxMov} & \forall i,j,k \\ & \sum_{i=1}^{r} \mathsf{mov}_{ijk} = \mathsf{ADmov}_{jk} & \forall j,k \\ & \sum_{i=1}^{r} \mathsf{period}_{ijk} \geq \mathsf{op}_{jk} & \forall j,k \\ & \sum_{i=1}^{p} \mathsf{period}_{ijk} \leq \mathsf{AD}_{ij} \times p & \forall i,j \\ & \sum_{i=1}^{n} \mathsf{AD}_{ij} \leq \mathsf{RTM}_{i} \times \mathsf{n} & \forall i \\ & \mathsf{period}_{ijk}, \mathsf{AD}_{ij}, \mathsf{RTM}_{i} \in \{0,1\} & \forall i,j,k \end{array}$$

#### Objective function and constraints

 $mov_{ijk} = \# \text{ of movements handled by RTM i} \\ at aerodrome j during period k \\ period_{ijk} = \begin{cases} 1 & \text{if AD } j \text{ assigned to RTM } i \text{ during period } k \\ 0 & \text{otherwise} \end{cases}$  $AD_{ij} = \begin{cases} 1 & \text{if AD } j \text{ assigned to RTM } i \\ 0 & \text{otherwise} \end{cases}$ 

$$\mathsf{RTM}_i = \begin{cases} 1 & \text{if } \mathsf{RTM} \ i \text{ is used} \\ 0 & \text{otherwise} \end{cases}$$

### **Data collection (1)**

29 "ROT-compatible" swedish airports( # movements per period ≤ 6)operating during a week in October 2013

from:

- LFV (AIP)
- Transportstyrelsen
- EUROCONTROL (DDR2)

### **Data collection (2)**



#### **Lower bounds**

LB1

- = max # active aerodromes / max # aerodromes per RTM
- = ceil [29/3] = **10** modules

LB2

- = max # movements per period / max # movements per RTM
- = ceil [53/6] = **9** modules

### **Evaluation (1)**

| Module | Assigned aerodromes |       |      |  |  |  |  |  |  |  |  |  |  |  |
|--------|---------------------|-------|------|--|--|--|--|--|--|--|--|--|--|--|
| RTM1   | ESMT,               | ESNO, | ESSD |  |  |  |  |  |  |  |  |  |  |  |
| RTM2   | ESDF,               | ESMQ, | ESSL |  |  |  |  |  |  |  |  |  |  |  |
| RTM3   | ESCF,               | ESKN, | ESMK |  |  |  |  |  |  |  |  |  |  |  |
| RTM4   | ESGJ,               | ESOK, | ESSP |  |  |  |  |  |  |  |  |  |  |  |
| RTM5   | ESIB,               | ESNQ, | ESNZ |  |  |  |  |  |  |  |  |  |  |  |
| RTM6   | ESNS,               | ESNX, | ESPA |  |  |  |  |  |  |  |  |  |  |  |
| RTM7   | ESGP,               | ESPE, | ESTL |  |  |  |  |  |  |  |  |  |  |  |
| RTM8   | ESCM,               | ESNN  |      |  |  |  |  |  |  |  |  |  |  |  |
| RTM9   | ESGT,               | ESOW, | ESTA |  |  |  |  |  |  |  |  |  |  |  |
| RTM10  | ESIA,               | ESMX, | ESOE |  |  |  |  |  |  |  |  |  |  |  |

Optimal assignment of aerodromes to modules for October 14, 2013

### **Evaluation (2)**

| Date       | RTMs |
|------------|------|
| 2013-10-14 | 10   |
| 2013-10-15 | 10   |
| 2013-10-16 | 10   |
| 2013-10-17 | 10   |
| 2013-10-18 | 9    |
| 2013-10-19 | 9    |
| 2013-10-20 | 9    |

The number of RTMs for all weekdays in October 2013

### **Evaluation (3)**

| <pre>movements[9,j,k]</pre> |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |  |
|-----------------------------|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|--|
| :                           | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | := |  |
| ESGT                        | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 0  | 0  | 0  | 0  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |    |  |
| ESOW                        | 0 | 0 | 0 | 0 | 2 | 1 | 1 | 0 | 2 | 4 | 2  | 0  | 5  | 4  | 3  | 3  | 1  | 3  | 5  | 2  | 1  | 0  | 0  | 0  |    |  |
| ESTA                        | 0 | 0 | 0 | 0 | 2 | 2 | 1 | 6 | 1 | 0 | 1  | 2  | 1  | 1  | 2  | 1  | 1  | 3  | 1  | 0  | 1  | 0  | 0  | 0  |    |  |

The number of movements at aerodromes in the module RTM9.

### Conclusions

- ROT concept cost-saving opportunities for small aerodromes
- Many challenging practical questions
- Modeling can solve some of them
- Results agree with lower bounds estimation

### **Future Work**

- optimize workload across modules
- handle simultaneous movements inside the module
- staffing (schedule)
- clustering aerodromes
- RTC positioning
- simulations
- risk assessment



# Thank

