
Altitude Terrain Guarding and Guarding Uni-Monotone1

Polygons2

Ovidiu Daescua, Stephan Friedrichsb,c, Hemant Malika,3

Valentin Polishchukd, Christiane Schmidtd4

aDepartment of Computer Science, University of Texas at Dallas, {daescu,5

malik}@utdallas.edu6

bMax Planck Institute for Informatics, Saarbrücken, Germany, sfriedri@mpi-inf.mpg.de7

cSaarbrücken Graduate School of Computer Science, Saarbrücken, Germany8

dCommunications and Transport Systems, ITN, Linköping University, Norrköping,9

Sweden, {valentin.polishchuk, christiane.schmidt}@liu.se10

Abstract11

We present an optimal, linear-time algorithm for the following version of
terrain guarding: given a 1.5D terrain and a horizontal line, place the min-
imum number of guards on the line to see all of the terrain. We prove that
the cardinality of the minimum guard set coincides with the cardinality of
a maximum number of “witnesses”, i.e., terrain points, no two of which can
be seen by a single guard. We show that our results also apply to the Art
Gallery problem in “monotone mountains”, i.e., x-monotone polygons with
a single edge as one of the boundary chains. This means that any mono-
tone mountain is “perfect” (its guarding number is the same as its witness
number); we thus establish the first non-trivial class of perfect polygons.

Keywords: Terrain Guarding Problem, Art Gallery Problem, Altitude12

Terrain Guarding Problem, Perfect Polygons, Monotone Polygons,13

Uni-monotone Polygons, Monotone Mountains14

1. Introduction15

Both the Art Gallery Problem (AGP) and the 1.5D Terrain Guarding16

Problem (TGP) are well known problems in Computational Geometry; see17

the classical book [1] for the former and Section 1.1 for the recent work on18

the latter. In the AGP, we are given a polygon P in which we have to place19

the minimum number of point-shaped guards, such that they see all of P .20

Preprint submitted to Computational Geometry Theory and Applications March 1, 2019

In the 1.5D TGP, we are given an x-monotone chain of line segments in R2,21

the terrain T , on which we have to place a minimum number of point-shaped22

guards, such that they see T .23

Both problems have been shown to be NP-hard: Krohn and Nilsson [2]24

proved the AGP to be hard even for monotone polygons by a reduction from25

MONOTONE 3SAT, and King and Krohn [3] established the NP-hardness26

of both the discrete and the continuous TGP (with guards restricted to the27

terrain vertices or guards located anywhere on the terrain) by a reduction28

from PLANAR 3SAT.29

The problem of guarding a uni-monotone polygon (an x-monotone poly-30

gon with a single horizontal segment as one of its two chains) and the problem31

of guarding a terrain with guards placed on a horizontal line above the ter-32

rain appear to be problems somewhere between the 1.5D TGP and the AGP33

in monotone polygons. We show that, surprisingly, both problems allow for34

a polynomial time algorithm: a simple sweep.35

Moreover, we are able to construct a maximum “witness set” (i.e., a set36

of points with pairwise-disjoint visibility polygons) of the same cardinality37

as the minimum guard set for uni-monotone polygons. Hence, we establish38

the first non-trivial class of “perfect polygons” [4], which are exactly the39

polygons in which the size of the minimum guarding set is equal to the size40

of the maximum witness set (the only earlier results concerned “rectilinear41

visibility” [5] and “staircase visibility” [4]). Since no guard can see two42

witness points, for any witness set W and any guard set G, |W | ≤ |G| holds;43

in particular, if we have equality, then G is a smallest-cardinality guard set44

(solution to the guarding problem).45

One application of guarding a terrain with guards placed on a horizon-46

tal line above the terrain, the Altitude Terrain Guarding Problem (ATGP),47

comes from the idea of using drones to surveil a complete geographical area.48

Usually, these drones will not be able to fly arbitrarily high, which moti-49

vates us to cap the allowed height for guards (and without this restriction a50

single sufficiently high guard above the terrain will be enough). Of course,51

eventually we are interested in working in two dimensions and a height, the52

2.5D ATGP. One dimension and height, the ATGP, is a natural starting53

point to develop techniques for a 2.5D ATGP. However, the 2.5D ATGP—54

in contrast to the 1.5D ATGP—is NP-hard by a straight-forward reduction55

from the (2D) AGP: we construct a terrain such that we carve out a hole56

for the polygon’s interior and need to guard it from the altitude line at the57

“original” height, then we do need to find the minimum guard set for the58

2

polygon.59

Roadmap. In the remainder of this section we review related work. In Sec-60

tion 2 we formally introduce our problems and necessary definitions, and we61

give some basic properties of our problems. In Section 3 we present our algo-62

rithm, prove that it computes an optimal guard set and that uni-monotone63

polygons are perfect; we also extend that result to monotone mountains (uni-64

monotone polygons in which the segment-chain is not necessarily horizontal).65

We show how we can obtain a runtime of O(n2 log n); Section 3.7 shows how66

to find the optimal guard set in linear time (since the faster algorithm does67

not show the perfectness, we also keep in the slower algorithm). Finally, we68

conclude in Section 4.69

1.1. Related work70

While the TGP is quite a restricted version of the guarding problem, it71

is far from trivial, and understanding it is an essential step in attacking the72

full 2.5D terrain setting. Our work continues the line of many papers on73

1.5D terrains, published during the last 10 years; below we survey some of74

the earlier work.75

Research first focused on approximation algorithms, because NP-hardness76

was generally assumed, but had not been established. Ben-Moshe et al. [6]77

presented a first constant-factor approximation for the discrete vertex guard78

problem version (that is, guards may not lie anywhere on T , but are re-79

stricted to terrain vertices). This approximation algorithm constituted a80

building block for an O(1)-approximation of the continuous version, where81

guards can have arbitrary locations on T , the Continuous Terrain Guard-82

ing Problem (CTGP). Ben-Moshe et al. did not state the approximation83

factor, King [7] later claimed it to be a 6-approximation (with minor modifi-84

cations). Clarkson and Varadarajan [8] presented a constant-factor approx-85

imation based on ε-nets and Set Cover, King [7, 9] gave a 5-approximation86

(first published as a 4-approximation, he corrected a flaw in the analysis in87

the errata). Various other, improved approximation algorithms have been88

presented: Elbassioni et al. [10] obtained a 4-approximation for the CGTP.89

Gibson et al. [11, 12], presented a Polynomial Time Approximation Scheme90

(PTAS) for a finite set of guard candidates. Only in 2010, after all these91

approximation results were published, NP-hardness of both the discrete and92

the continuous TGP was established by King and Krohn in the 2010 con-93

ference version of [3]. Khodakarami et al. [13] showed that the TGP is94

3

fixed-parameter tractable w.r.t. the number of layers of upper convex hulls95

induced by a terrain. Martinović et al. [14] proposed an approximate solver96

for the discrete TGP: they compute 5.5- and 6-approximations given the97

knowledge about pairwise visibility of the vertices as input. Friedrichs et98

al. [15] showed that the CTGP has a discretization of polynomial size. As99

the CTGP is known to be NP-hard, and Friedrichs et al. can show mem-100

bership in NP, this also shows NP-completeness. And from the Polynomial101

Time Approximation Scheme (PTAS) for the discrete TGP from Gibson et102

al. [12] follows that there is a PTAS for the CTGP.103

Eidenbenz [16] considered the problem of monitoring a 2.5D terrain from104

guards on a plane with fixed height value (which lies entirely above or par-105

tially on the terrain). He presented a logarithmic approximation for the106

additional restriction that each triangle in the triangulation of the terrain107

must be visible from only a single guard.108

Hurtado et al. [17] presented algorithms for computing visibility regions109

in 1.5D and 2.5D terrains.110

Perfect polygons were defined by Amit et al. [18] in analogy with the111

concept of perfect graphs (introduced by Berge [19] in the 1960s): graphs in112

which for every induced subgraph the clique number equals the chromatic113

number. The only earlier results on perfect polygons concerned so-called114

r-visibility (or rectangular vision) and s-visibility (or “staircase” visibility).115

For r-visibility two points p and q see each other if the rectangle spanned116

by p and q is fully contained in the polygon, for s-visibility a staircase path117

between p and q implies visibility. Worman and Keil [5] considered the AGP118

under r-visibility in orthogonal polygons and showed that these polygons119

are perfect under r-visibility; Motwani et al. [4] obtained similar results for120

s-visibility.121

In his PhD Dissertation [20] Bengt Nilsson presented a linear-time algo-122

rithm to compute an optimal set of vision points on a watchman route in a123

walkable polygon, a special type of simple polygon that encompasses spiral124

and monotone polygons. Being developed for a more general type of poly-125

gon, rather than a uni-modal polygon, his algorithm is non-trivial and its126

proof of correctness and optimality is complex. In contrast, our algorithm is127

simple and elegant, and allows to construct a witness set of equal cardinality.128

In Section 3.7 we make some observations on the visibility characterizations129

that allow us to obtain a simple, greedy, linear-time algorithm.130

4

H

LC(P)

Figure 1: Left: An x-monotone polygon; the upper chain is red. Right: A uni-monotone
polygon.

2. Notation, Preliminaries, and Basic Observations131

In this paper we deal only with simple polygons, so the term “polygon”132

will mean “simple polygon”. A polygon P is a simply-connected region whose133

boundary is a polygonal cycle; we assume that P is a closed set, i.e., that its134

boundary belongs to P . Unless specified otherwise, n will denote the number135

of vertices of P .136

A simple polygon P is x-monotone (Figure 1, left) if the intersection `∩P137

of P with any vertical line ` is a single segment (possibly empty or consisting138

of just one point). It is easy to see that the boundary of a monotone polygon139

P decomposes into two chains between the rightmost and leftmost points of140

P .141

Definition 1. An x-monotone polygon P is uni-monotone if one of its two142

chains is a single horizontal segment H (Figure 1, right).143

W.l.o.g. we will assume that H is the upper chain. We denote the lower144

chain of P by LC(P). The vertices of LC(P) are denoted by V (P) =145

{v1, . . . , vn} from left to right, and the edges by E(P) = {e1, . . . , en−1} with146

ei = vivi+1.147

A point p ∈ P sees or covers q ∈ P if pq is contained in P . Let VP (p)148

denote the visibility polygon (VP) of p, i.e., VP (p) := {q ∈ P | p sees q}.149

For G ⊂ P we abbreviate VP (G) :=
⋃

g∈G VP (g). The Art Gallery Problem150

(AGP) for P is to find a minimum-cardinality set G ⊂ P of points (called151

guards) that collectively see all of P .152

We now define the other object of our focus – terrains and altitude guard-153

ing. Say that a polygonal chain is x-monotone if any vertical line intersects154

it in at most one point.155

Definition 2. A terrain T is an x-monotone polygonal chain.156

5

A

v1

T

vn

Figure 2: A terrain T in black (the vertices are the solid circles) and an altitude
line A in red.

For instance, the lower chain LC(P) of a uni-monotone polygon is a157

terrain. We thus reuse much of the notation for the lower chains: the vertices158

of T are denoted by V (T) = {v1, . . . , vn} from left to right, and the edges159

by E(T) = {e1, . . . , en−1} where ei = vivi+1 and n := |V (T)|. The relative160

interior of an edge ei is int(ei) := ei \ {vi, vi+1}; we will say just “interior”161

to mean “relative interior”. For two points p, q ∈ T , we write p ≤ q (p < q)162

if p is (strictly) left of q, i.e., has a (strictly) smaller x-coordinate.163

Definition 3. An altitude line A for a terrain T is a horizontal segment164

located above T (that is, the y-coordinate of all vertices of T is smaller than165

the y-coordinate of A), with the leftmost point vertically above v1 and the166

rightmost point vertically above vn, see Figure 2.167

We adopt the same notation for points on A as for two points on T : for168

p, q ∈ A, we write p ≤ q (p < q) if p is (strictly) left of q, i.e., has a (strictly)169

smaller x-coordinate.170

A point p ∈ A sees or covers q ∈ T if pq does not have crossing intersec-171

tion with T . Let VT (p) denote the visibility region of p, i.e., VT (p) := {q ∈172

T | p sees q}. For G ⊆ A we abbreviate VT (G) :=
⋃

g∈G VT (g). We sym-173

metrically define the visibility region for q ∈ T : VT (q) := {p ∈ A | q sees p}.174

The Altitude Terrain Guarding Problem (ATGP) for P is to find a minimum-175

cardinality set G ⊂ A of points (called guards) that collectively see all of T .176

We now define the “strong” and “weak” visibility for edges of polygons177

and terrains:178

Definition 4. For an edge e ∈ P or e ∈ T the strong visibility polygon179

is the set of points that see all of e; the polygons are denoted by Vs
P (e) :=180

{p ∈ P : ∀q ∈ e; p sees q} and Vs
T (e) := {p ∈ A : ∀q ∈ e; p sees q}. The181

weak visibility polygon of an edge e is the set of points that see at least182

6

one point on e; the notation is Vw
P (e) := {p ∈ P : ∃q ∈ e; p sees q} and183

Vs
T (e) := {p ∈ A : ∃q ∈ e; p sees q} .184

Last but not least, we recall definitions of witness sets and perfect poly-185

gons [18, 4].186

Definition 5. A set W ⊂ P (W ⊂ T) is a witness set if ∀ wi 6= wj ∈ W we187

have VP (wi) ∩ VP (wj) = ∅. A maximum witness set Wopt is a witness set of188

maximum cardinality, |Wopt| = max{|W | : witness set W}.189

Definition 6. A polygon class P is perfect if the cardinality of an opti-190

mum guard set and the cardinality of a maximum witness set coincide for all191

polygons P ∈ P.192

The following two lemmas show that for guarding uni-monotone polygons193

we only need guards on H, and coverage of LC(P) is sufficient to guarantee194

coverage of the entire polygon. Hence, the Altitude Terrain Guarding Prob-195

lem (ATGP) and the Art Gallery Problem (AGP) in uni-monotone polygons196

are equivalent.197

Lemma 1. Let P be a uni-monotone polygon, with optimal guard set G.198

Then there exists a guard set GH with |G| = |GH| and g ∈ H for all g ∈ GH.199

That is, if we want to solve the AGP for a uni-monotone polygon, w.l.o.g. we200

can restrict our guards to be located on H.201

Proof. Consider any optimal guard set G, let g ∈ G be a guard not located202

on H. Let gH be the point located vertically above g on H. Let p ∈ VP (g)203

be a point seen by g. W.l.o.g. let p be located to the left of g (and gH),204

that is, x(p) < x(g), where x(p) is the x-coordinate of a point p (Figure 3).205

As g sees p, the segment pg does not intersect the polygon boundary, that206

is, the lower chain of P (LC(P)) is nowhere located above pg: for a point207

q ∈ LC(P) let pg(q) be the point on pg with the same x-coordinate as q,208

then ∀q ∈ LC(P), x(p) ≤ x(q) ≤ x(g) we have y(q) ≤ y(pg(q)). Since pgH is209

above pg, we have that pgH is also above LC(P) and hence p is seen by gH210

as well. That is, we have VP (g) ⊆ VP (gH), and substituting all guards with211

their projection on H does not lose coverage of any point in the polygon,212

while the cardinality of the guard set stays the same.213

An analogous proof shows that in the terrain guarding, we can always214

place guards on the altitude line A even if we would be allowed to place215

them anywhere between the terrain T and A.216

7

Figure 3: A uni-monotone polygon P . g ∈ G is a guard not located on H and gH

is the point located vertically above g on H. As g sees p, gH sees p as well.

Figure 4: A uni-monotone polygon P . The guard g ∈ G sees pLC the point on
LC(P) vertically below p. LC(P) does not intersect pLCg and P is uni-monotone,
hence, g sees p.

Lemma 2. Let P be a uni-monotone polygon, let G ⊂ H be a guard set that217

covers LC(P), that is, LC(P) ⊂ VP (G). Then G covers all of P , that is,218

P ⊆ VP (G).219

Proof. Let p ∈ P, p /∈ LC(P) be a point in P . Consider the point pLC that220

is located vertically below p on LC(P). Let g ∈ G be a guard that sees221

pLC (as pLC ∈ LC(P) and LC(P) ⊂ VP (G), there exists at least one such222

guard, possibly more than one guard in G covers pLC), see Figure 4. LC(P)223

does not intersect the line pLCg, and because P is uni-monotone the triangle224

∆(g, p, pLC) is empty, hence, g sees p.225

Consequently, the ATGP and the AGP for uni-monotone polygons are226

equivalent; we will only refer to the ATGP in the remainder of this paper,227

with the understanding that all our results can be applied directly to the228

AGP for uni-monotone polygons.229

8

Figure 5: p ∈ VT (g′): the gray triangle ∆(g′, p, pA) is empty and so p ∈ VT (g).

The following lemma shows a general property of guards on the altitude230

line, which we will use (in parts implicitly) in several cases; it essentially231

says that if a guard cannot see a point to its right, no guard to its left will232

help him by covering this point (this lemma is very much related to the well-233

known “order claim” [6], though the order claim holds for guards located on234

the terrain):235

Lemma 3. Let g ∈ A, p ∈ T, g < p. If p /∈ VT (g) then ∀g′ < g, g′ ∈ A : p /∈236

VT (g′).237

Proof. We show that if there exists g′ ∈ A, g′ < g which covers p, then g also238

covers p; see Figure 5 for an illustration of the proof. Since g′ covers p, the239

segment g′p lies on or over T , and the triangle ∆(g′, p, pA), with pA being240

the point located vertically above p on A, is empty. We have g′ < g < p,241

and as x(p) = x(pA) we have g′ < g < pA. Hence, gp is fully contained in242

the triangle ∆(g′, p, pA), and lies on or over T , that is, g sees p.243

Before we present our algorithm, we conclude this section with an obser-244

vation that clarifies that guarding a terrain from an altitude is intrinsically245

different from terrain guarding, where the guards have to be located on the246

terrain itself. We repeat (and extend) a definition from [15]:247

Definition 7. For a feasible guard cover C of T (C ⊂ T for terrain guarding248

and C ⊂ A for terrain guarding from an altitude), an edge e ∈ E is critical249

w.r.t. g ∈ C if C \ {g} covers some part of, but not all of the interior of e.250

If e is critical w.r.t. some g ∈ C, we call e a critical edge.251

That is, e is critical if and only if more than one guard is responsible for252

covering its interior.253

g ∈ C is a left-guard (right-guard) of ei ∈ E if g < vi (vi+1 < g) and ei254

is critical w.r.t. g. We call g a left-guard (right-guard) if it is a left-guard255

(right-guard) of some e ∈ E.256

9

(a)

(b)

Figure 6: (a) This terrain needs two vertex- but only one non-vertex guard [6].
(b) A terrain shown in black and an altitude line A shown in red. Four guards,
g1, . . . , g4, of an optimal guard cover are shown as points. The green and the blue
guard are both responsible for covering a critical edge both to their left and to
their right: g2 for both ei and ej , and g3 for both ej and ek.

Observation 1. For terrain guarding we have: any guard that is not placed257

on a vertex, cannot be both a left- and a right-guard [15]. (Note that a min-258

imum guard set may need to contain guards that are not placed on vertices,259

see Figure 6(a).) However, for guarding a terrain from an altitude, a guard260

may be responsible to cover critical edges both to its left and to its right, that261

is, guards may be both a left- and a right-guard, see Figure 6(b).262

The observation suggests that guarding terrain from an altitude line263

(ATGP) could be more involved than terrain guarding (from the terrain264

itself), as in ATGP a guard may have to cover both left and right. However,265

while terrain guarding is NP-hard [3], in this paper we prove that ATGP is266

solvable in polynomial time.267

3. Sweep Algorithm268

Our algorithm is a sweep, and informally it can be described as follows:269

We start with an empty set of guards, G = ∅, and at the leftmost point270

of A; all edges E(T) are completely unseen. We sweep along A from left to271

right and place a guard gi (and add gi to G) whenever we could no longer272

see all of an edge e′ if we would move more to the right. We compute the273

10

visibility polygon of gi, VT (gi), and for each edge e = {v, w} partially seen274

by gi (v /∈ VT (gi), w ∈ VT (gi)), we split the edge, and only keep the open275

interval that is not yet guarded. Thus, whenever we insert a new guard gi276

we have a new set of “edges” Ei(T) that are still completely unseen, and277

∀f ∈ Ei(T) we have f ⊆ e ∈ E(T). We continue placing new guards until278

T ⊆ VT (G). We show that there is a witness set of size |G|, implying that279

our guard set is optimal: we place a witness on e′ at the point where we280

would lose coverage if we did not place the guard gi.281

In the remainder of this section we:282

• Describe how we split partly covered edges in Subsection 3.1.283

• Formalize our algorithm in Subsection 3.2.284

• Prove that our guard set is optimal, and how that proves that uni-285

monotone polygons are perfect in Subsections 3.3 and 3.4.286

• Show how that results extends to monotone mountains in Subsec-287

tion 3.5.288

• Show how we can efficiently preprocess our terrain, and that we obtain289

an algorithm runtime of O(n2 log n) in Subsection 3.6.290

• Show how we can improve the runtime to O(n) in Subsection 3.7.291

3.1. How to Split the Partly Seen Edges292

For each edge e ∈ E(T) in the initial set of edges we need to determine293

the point pce that closes the interval on A from which all of e is visible. We294

denote the set of points pce for all e ∈ E(T) as the set of closing points C,295

that is,296

C =
⋃

e∈E(T)

{pce ∈ A : (e ⊆ VT (pce)) ∧ (e * VT (p) ∀p > pce, p ∈ A)}.

The points in C are the rightmost points on A in the strong visibility polygon297

of the edge e, for all edges. Analogously, we define the set of opening points298

O: for each edge the leftmost point poe on A, such that e ⊆ VT (poe),299

O =
⋃

e∈E(T)

{poe ∈ A : (e ⊆ VT (poe)) ∧ (e * VT (p) ∀p < poe, p ∈ A)}.

11

Figure 7: The closing point pce, the opening point poe, and the soft opening point pse
for an edge e ∈ E(T). A guard to the left of pse cannot see any point of e, a guard
g with pse ≤ g < poe can see parts, but not all of e, a guard g with poe ≤ g ≤ pce can
see the complete edge e, and a guard g with g > pce cannot see all of e.

For each edge e the point in O is the leftmost point on A in the strong300

visibility polygon of e.301

Moreover, whenever we place a new guard, we need to split partly seen302

edges to obtain the new, completely unseen, possibly open, interval, and303

determine the point onA where we would lose coverage of this edge (interval).304

That is, whenever we split an edge we need to add the appropriate point to C.305

To be able to easily identify whether an edge e of the terrain needs to be306

split due to a new guard g, we define the set of “soft openings”307

S =
⋃

e∈E(T)

{pse ∈ A : (∃q ∈ e, q ∈ VT (pse))∧(@q ∈ e, q ∈ VT (p) ∀p < pse, p ∈ A)}

That is, any point pse ∈ S is the leftmost point on A of the weak visibility308

polygon of some edge e: if g is to the right of pse (and to the left of the closing309

point) the guard can see at least parts of e. See Figure 7 for an illustration of310

the closing point, the opening point, and the soft opening point of an edge e.311

So, how do we preprocess our terrain such that we can easily identify312

the point on A that we need to add to C when we split an edge? We make313

an initial sweep from the rightmost vertex to the leftmost vertex; for each314

vertex we shoot a ray to all other vertices to its left and mark the points,315

mark points, where these rays hit the edges of the terrain. This leaves us with316

O(n2) preprocessed intervals. For each mark point m we store the rightmost317

of the two terrain vertices that defined the ray hitting the terrain at m, let318

this terrain vertex be denoted by vm. Note that for each edge ej = {vj, vj+1}319

with vj+1 convex vertex (seen from above the terrain), this includes vj+1 as320

a mark point.321

Whenever the placement of a guard g splits an edge e such that the open322

interval e′ ⊂ e is not yet guarded, see for example Figure 8(a), we identify323

12

(a) (b)

Figure 8: The terrain T is shown in black, the altitude line A is shown in red. The
orange lines show the rays from the preprocessing step, their intersection points
with the terrain define the mark points. Assume the open interval e′, shown in
light green, is still unseen. To identify the closing point for e′ we identify the mark
point to the right of e′, me′ , and shoot a ray r, shown in dark green, from the right
end point of e′ through vme′ . The intersection point of r and A defines our new
closing point pce′ .

the first mark, me′ to the right of e′ and shoot a ray r from the right endpoint324

of e′ through vme′
(the one we stored with me′). The intersection point of r325

and A defines our new closing point pce′ , see Figure 8(b).326

3.2. Algorithm Pseudocode327

The pseudocode for our algorithm is presented in Algorithm 1. Lines 1–3328

are initialization: we start moving right from the point a ∈ A above the329

leftmost vertex, x1, of the terrain (there is no guard there). Lines 5–end are330

the main loop of the algorithm: we repeatedly move right to the next closing331

point and place a guard there. The closing points are maintained in the332

queue C, and an event is deleted from the queue if the new guard happens to333

fully see the edge (lines 10–12). The edges that are partially seen by the new334

guard are split into the visible and invisible parts, and the invisible part is335

added to the set Eg of yet-to-be-seen edges, together with the closing point336

for the inserted part-edge (lines 15–end).337

3.3. Minimum Guard Set338

Lemma 4. The set G output by Algorithm 1 is feasible, that is, T ⊆ VT (G).339

Proof. Assume there is a point p ∈ T with p /∈ VT (G). For p we have p ∈ e340

for some edge e ∈ E(T). As p is not covered, there exists no guard in G in341

the interval [poe, p
c
e] on A. Thus, pce is never the event point that defines the342

placement of a guard in lines 6,7. Moreover, as @gi : poe ≤ gi ≤ pce, e is never343

13

completely deleted from Eg in lines 10–12. Consequently, for some i we have344

poe > gi and gi ≥ pse (lines 14–22). As p /∈ VT (G), we have p ∈ e′ ⊂ e (e′345

being the still unseen interval of e).346

Again, because p /∈ VT (G), @gj ∈ [poe, p
c
e′] ⊂ A, j ≥ i. Due to line 6 no347

guard may be placed to the left of pce′ , hence, there is no guard placed in348

[poe, b] (where b is the right end point of A). That is, e′ is never deleted from349

Eg, a contradiction to G being the output of Algorithm 1.350

To show optimality, we show that we can find a witness set W with351

|W | = |G|. We will place a witness for each guard Algorithm 1 places. First,352

we need an auxiliary lemmas:353

Lemma 5. Let c ∈ C be the closing point in line 6 of Algorithm 1 that en-354

forces the placement of a guard gi. If c is the closing point for a complete edge355

(and not just an edge interval), then there exists an edge ej = {vj, vj+1} ∈356

E(T) for which c is the closing point, such that vj+1 is a reflex vertex, and357

vj is a convex vertex.358

Proof. We first prove that that there exists an edge ej = {vj, vj+1} ∈ E(T)359

for which c is the closing point, such that vj+1 is a reflex vertex.360

Assume there is no such edge ej for which vj+1 is a reflex vertex, pick the361

rightmost edge ej with vj+1 being a convex vertex for which c is the closing362

point. Let Ec ⊆ Eg be the set of edges (and edge intervals) for which c is363

the closing point (ej ∈ Ec). (Recall from Algorithm 1 that Eg is the set364

of yet-to-be-seen edges—the algorithm terminates when Eg = ∅; Ec is used365

only for the proof and is not part of the algorithm.) As c = pcej is the closing366

point that defines the placement of a guard we have pce > c for all e ∈ Eg \Ec367

(all other active closing points are to the right of c). Because vj+1 sees c:368

∠(vj, vj+1, c) ≤ ∠(vj, vj+1, vj+2) < 180◦. We consider two cases:369

• Case 1 ∠(vj, vj+1, c) = ∠(vj, vj+1, vj+2): In this case, c is the closing370

point also for ej+1. Because ej is the rightmost edge with its right vertex371

vj+1 being a convex vertex for which c is the closing point, the right372

vertex of ej+1, vj+2, must be a reflex vertex. This is a contradiction to373

having no such edge ej for which the right vertex is a reflex vertex.374

• Case 2 ∠(vj, vj+1, c) < ∠(vj, vj+1, vj+2): See Figure 9(a) for an illus-375

tration of this case. Let q be the closing point for ej+1. Then the376

two triangles ∆(vj, vj+1, c) and ∆(vj+1, vj+2, q) are empty (and we have377

c ≥ vj+1 and q ≥ vj+2). Because T is x-monotone also the triangle378

14

(a) (b)

Figure 9: (a) If ∠(vj , vj+1, c) < ∠(vj , vj+1, vj+2), the triangles ∆(vj , vj+1, c),
∆(vj+1, vj+2, q) (shown in light gray) and the triangle ∆(c, q, vj+1) (shown in dark
gray) are empty. Hence, c is not the closing point for ej . (b) Placement of the
witness in case c is only defined by edge intervals: we pick the rightmost such edge
interval e′, we have e′ = [vj , q) for some point q ∈ ej , q 6= vj+1, and we place a
witness at qε.

(a) (b)

Figure 10: Cases from the proof of Lemma 5: If vj is a convex (a) or reflex (b)
vertex of the chain g, vj , vj+1.

∆(c, q, vj+1) is empty, hence, q ∈ Vs
T (ej), a contradiction to c being ej’s379

closing point.380

We have proved that there exists an edge ej = {vj, vj+1} ∈ E(T) for381

which c is the closing point, such that vj+1 is a reflex vertex; we now prove382

that vj is a convex vertex. Assume, for the sake of contradiction, that vj383

is reflex. Then c cannot be the closing point for ej−1, and there exists a384

guard g with g < c that monitors (p, vj] ⊂ ej−1; this is because irrespective385

of whether vj is below or above vj+1, the edge ej−1 is not seen by c (refer to386

Fig. 10). Hence, the triangle ∆(g, p, vj) is empty. We distinguish whether387

the chain g, vj, vj+1 has vj as a convex or a reflex vertex.388

If vj is a convex vertex of this chain, see Figure 10(a), then also the389

triangle ∆(g, vj, vj+1) is empty. Thus, g also monitors ej. But if g monitors390

ej, ej would have been removed from the queue already, that is, ej /∈ Eg, a391

contradiction.392

If vj is a reflex vertex of this chain, see Figure 10(b), there has to exist a393

15

Figure 11: Si, i = 1, . . . , 4, from the proof of Lemma 6, shown in gray.

vertex w, w > vj+2 > vj+1, that blocks the sight from any point to the right394

of c to vj+1 and makes c the closing point. Then all of the terrain between395

vj+1 and w lies completely below the line segment vj+1, w. Hence, c cannot396

see vj+2 (in fact it cannot see (vj+1, vj+2] ⊂ ej+1). As vj is a reflex vertex397

of the chain g, vj, vj+1, g cannot see vj+2 either. Thus, the closing point for398

ej+1 is still in the queue, and to the left of c, a contradiction to c being the399

closing point that is chosen in line 6 of Algorithm 1.400

Now we can define our witness set:401

Lemma 6. Given the set G output by Algorithm 1, we can find a witness set402

W with |W | = |G|.403

Proof. We consider the edges or edge intervals, which define the closing point404

c ∈ C that leads to a placement of guard gi in lines 6, 7 of Algorithm 1.405

If c is defined by some complete edge ej ∈ E(T), let Ec ⊆ Eg be the set of406

edges for which c is the closing point (we remind from Algorithm 1 that Eg407

is the set of yet-to-be-seen edges—the algorithm terminates when Eg = ∅).408

We pick the rightmost edge ej ∈ Ec such that vj is a convex vertex and vj+1409

is a reflex vertex, which exists by Lemma 5, and choose wi = vj.410

Otherwise, that is, if c is only defined by edge intervals, we pick the411

rightmost such edge interval e′ ⊂ ej. Then e′ = [vj, q) for some point q ∈412

ej, q 6= vj+1, and we place a witness at qε, a point ε to the left of q on T :413

wi = qε, see Figure 9(b).414

We define W = {w1, . . . , w|G|}. By definition |W | = |G|, and we still need415

to show that W is indeed a witness set.416

Let Si be the strip of all points with x-coordinates between x(gi−1) + ε′417

and x(gi). Let pT be the vertical projection of a point p onto T , and pA the418

vertical projection of p ontoA. Si = {p ∈ R2 : (x(gi−1) + ε′ ≤ x(p) ≤ x(gi))∧419

(y(pT) ≤ y(p) ≤ y(pA))}. See Figure 11 for an illustration of these strips.420

16

We show that VT (wi) ⊆ Si for all i, hence, VT (wk) ∩ VT (w`) = ∅ ∀wk 6=421

w` ∈ W , which shows that W is a witness set.422

If wi = vj for an edge ej ∈ E(T), VT (wi) contains the guard gi, but no423

other guard: If gi−1 could see vj, we have ∠(gi−1, vj, vj+1) ≤ 180◦ because vj424

is a convex vertex, thus, gi−1 could see all of ej, a contradiction to ej ∈ Eg.425

Moreover, assume wi could see some point p with x(p) ≤ x(gi−1). The426

terrain does not intersect the line wip, and because the terrain is monotone427

the triangle ∆(wi, p, gi−1) would be empty, a contradiction to gi−1 not seeing428

wi.429

If wi = qε for e′ = [vj, q), again VT (wi) contains the guard gi, but no430

other guard: If gi−1 could see wi, q would not be the endpoint of the edge431

interval, a contradiction.432

Moreover, assume wi could see some point p with x(p) ≤ x(gi−1). Again,433

the terrain does not intersect the line wip, and because the terrain is mono-434

tone the triangle ∆(wi, p, gi−1) would be empty, a contradiction.435

Theorem 1. The set G output by Algorithm 1 is optimal.436

Proof. To show that G is optimal, we need to show that G is feasible and437

that G is minimum, that is438

|G| = OPT(T,A) := min{|C| | C ⊆ A is feasible w.r.t. ATGP(T,A)}.

Feasibility follows from Lemma 4, and by Lemma 6 we can find a witness set439

W with |W | = |G|, hence, G is minimum.440

3.4. Uni-monotone Polygons are Perfect441

In the proof for Lemma 6 we showed that for the ATGP there exists442

a maximum witness set W ⊂ T and a minimum guard set G ⊂ A with443

|W | = |G|. By Lemmas 1 and 2 the ATGP and the AGP for uni-monotone444

polygons are equivalent. Thus, also for a uni-monotone polygon P we can445

find a maximum witness set W ⊂ LC(P) ⊂ P and a minimum guard set446

G ⊂ H ⊂ P with |W | = |G|. This yields:447

Theorem 2. Uni-monotone polygons are perfect.448

3.5. Guarding Monotone Mountains449

We considered the Art Gallery Problem (AGP) in uni-monotone polygons,450

for which the upper polygonal chain is a single horizontal edge. There exist a451

17

similar definition of polygons: that of monotone mountains by O’Rourke [21].452

A polygon P is a monotone mountain if it is a monotone polygon for which453

one of the two polygonal chain is a single line segment (which in contrast to454

a uni-monotone polygon does not have to be horizontal). By examining our455

argument, one can see that we never used the fact that H is horizontal, so456

all our proofs also apply to monotone mountains, and hence, we have:457

Corollary 1. Monotone mountains are perfect.458

3.6. Algorithm Runtime459

Remember that we make an initial sweep from the rightmost vertex to460

the leftmost vertex; for each vertex we shoot a ray to all other vertices to461

its left and mark the points, mark points, where these rays hit the edges of462

the terrain. This leaves us with O(n2) preprocessed intervals. For each mark463

point m we store the rightmost of the two terrain vertices that defined the464

ray hitting the terrain at m, and we denote this terrain vertex by vm.465

The preprocessing step to compute the mark points costs O(n2 log n) time466

by ray shooting through all pairs of vertices (this can be reduced to O(n2)467

with the output-sensitive algorithm for computing the visibility graph [22],468

which also outputs all visibility edges sorted around each vertex). Based on469

these we can compute the closing points for all edges of the terrain. Similarly,470

we compute the mark points from the left to compute the opening points471

(using the left vertex of an edge to shoot the ray) and the soft opening472

points (using the right vertex of an edge to shoot the ray).473

Then, whenever we insert a guard (of which we might add O(n)), we need474

to shoot up to O(n) rays through terrain vertices to the right of this guard,475

see Figure 12, which altogether costs O(n2 log n) time [23]. Let the set of476

these rays be denoted by Ri for guard gi. The rays may split an edge (that477

is, the placement of guard gi resulted in an open interval of an edge e′ ⊂ e478

not yet being guarded). Let the intersection point of an edge e and a ray479

from Ri be denoted by re, it defines the right point of e′. For each of the480

intersection points re, we identify the mark point me′ to the right of re and481

we need to shoot a ray `e′ from re through vm′
e

(the terrain vertex we stored482

with the mark point me′) to compute the new closing point. That is, the483

intersection point of `e′ and A defines our new closing point pce′ . This gives484

a total runtime of O(n2 log n).485

18

Figure 12: An example where for O(n) guards each guard needs to shoot O(n)
(colored) rays to compute mark points to its right, yielding a lower bound of
O(n2) for this approach.

3.7. Improving the Runtime486

In this section we make some observations on the visibility characteriza-487

tions that allow us to obtain a simple, greedy, linear-time algorithm for the488

ATGP (the algorithm, however, does not show the perfectness).489

For a point v on T, we define the right intercept, pcv, and the left intercept,490

pov, as the rightmost and leftmost point on A in VP (v), respectively. (These491

are similar to the closing/opening points for edges of the terrain, defined492

earlier.) Equivalently, for a line segment s on T, we define the closing point,493

pcs, and the opening point, pos, as the right and left intercept on A in VP (s),494

respectively. For an example, consider Figure 13: x and z are the left and495

right intercept of point t, respectively, and w and y are the left and right496

intercept of point q, respectively. For the edge tq, x and y are the left and497

right intercept, respectively. If we move along A, from a to b, tq becomes498

partially visible at w, that is, w is the soft opening point for tq, while z is499

the last point from which tq is partially visible. The segment is completely500

visible for any point on A between x and y. Notice that potq = pot and pctq = pcq.501

We first compute the shortest path tree from each of a and b to the502

vertices of T , where a and b are the endpoints of A. This can be done in503

O(n) time [24]. Let Ta and Tb be the shortest path trees originating from504

a and b, respectively. Both Ta and Tb have O(n) vertices and edges. For a505

point v ∈ T , let Pv,a and Pv,b be the shortest paths from v to a and v to b,506

respectively. Note that these shortest paths consist of convex chains of total507

complexity O(n).508

Let πa(u) denote the parent of u in Ta and let πb(u) denote the parent509

of u in Tb. To find the right intercept of a vertex v of T we can extend510

the segment vπb(v) of Pv,b and find its intersection with A. To find the left511

19

a

t

q

b

b
′a

′

w x y z

Figure 13: Terrain T (x-monotone chain from a
′

to b
′
) with altitude line A = ab. Left and

right intercepts (w, x, y, and z) of points t, q and line segment tq are shown.

intercept of vertex v, we can extend the segment vπa(v) of Pv,a and find its512

intersection with A (see Figure 13 and Figure 14). Similarly, we can find the513

left and right intercept of a line segment s ∈ T .514

Our algorithm proceeds in a greedy fashion, placing guards on A in order,515

from a to b. Let g1, g2, . . . , gi be the guards placed so far. As discussed in516

Lemma 3, all edges that lie to the left of the last placed guard, gi, and the517

edge vertically below gi, are visible by the guards placed so far. Thus, after518

placing gi, we need to be concerned with the edges to the right of gi.519

Let e = tq be an edge of T that lies to the right of gi. Then tq is either520

(a) visible from gi, (b) not visible from gi (no point of tq is visible from gi) or521

(c) partially visible from gi, in which case gi sees a sub-segment q′q of tq. An522

easy observation from [24] and Lemma 3 is that none of the guards preceding523

gi on A can see any point of tq′; that portion of tq′ can only be seen by a524

guard placed to the right of gi.525

Lemma 5 shows that the guards forming the optimal set must be placed526

at well defined points on A, each of which corresponds to a right intercept,527

pcv, where v is either a vertex of T or otherwise it corresponds to some point528

on a partially visible edge, as described earlier. This implies that, starting529

from gi, the next guard will be placed at the leftmost right intercept rl on A,530

among those generated by the edges to the right of gi. We thus walk right531

along the terrain, placing the guards when needed: once we reach an edge532

vertically below rl we place gi+1 at rl and repeat the process.533

Note that to achieve linear time we cannot afford to keep the right in-534

tercepts in sorted order (see [25]). Instead, it is enough to keep track of535

the leftmost right intercept corresponding to the edges of T , including those536

20

generated by partially visible edges, following gi.537

Observation 2. After placing gi+1 all edges of T between gi and gi+1 are538

visible by the guards g1, g2, . . . , gi+1.539

It follows from Observation 2 that after placing gi+1 we do not need to540

be concerned with the right intercepts of the edges of T between gi and gi+1.541

For a segment s of T , we define xls as the x -coordinate of the leftmost542

point of s and xrs as the x -coordinate of the rightmost point of s (for an edge543

s = ei = vivi+1: x
l
s = x(vi) and xrs = x(vi+1)).544

We now describe our algorithm in more details. Observe that all edges545

to the left of the first guard g1 must be fully seen by g1. To place g1, we546

traverse the edges of T in order, starting with e1. For each edge visited, we547

mark it as visible, compute its right intercept (its closing point) on A, and548

keep track only of the leftmost such intercept, rl. Once we reach an edge549

ei ∈ T such that x(vi) ≤ rl < x(vi+1) we stop, mark ei as visible, and place550

g1 at rl. We then repeat the following inductive process. Assume guard gi551

has been placed. We start with the first edge of T to the right of gi and552

check if the edge is visible, not visible, or partially visible from gi. Let ek be553

the current edge. If ek is visible then we mark it as such. If ek is not visible554

then we compute its right intercept on A while keeping track of the leftmost555

right intercept, rl, following gi on A. If ek is partially visible, let e′k be the556

segment of ek not visible from gi and let q′ be the right endpoint of e′k; we557

compute the right intercept of q′ on A, pcq′ , while keeping track of rl. Once558

we reach an edge ei ∈ T such that x(vi) ≤ rl < x(vi+1) we stop, mark e as559

visible, and place gi+1 at rl. The proof that this greedy placement results in560

an optimal set of guards has been given in Section 3.3.561

Lemma 7. Given an edge e = tq of T and a point v ∈ e, the right intercept562

pcv of v can be found in O(1) amortized time. A similar claim holds for the563

left intercept of v.564

Proof. We present the proof for the right intercept (for the left one it is565

similar).566

The shortest path from a and b to each vertex of T can be found in O(n)567

time (see Subsection 3.6) and is available in the resulting shortest path tree.568

These shortest paths consist of convex chains. Let T u
b be the subtree of Tb569

rooted at vertex u.570

Recall that πb(u) denotes the parent of vertex u in Tb. Obviously, if v is571

an end vertex of e, the right intercept of v is available in constant time from572

21

a b
gi

a
′

b
′

t

v

q

πb(q)

u

πb(t)

pcv

Figure 14: Line segment tq is partially seen by guard gi. Shortest path tree originating
from b is shown with dashed lines (cyan).

Tb, as the intersection of the extension of vπb(v) and A. Assume v is interior573

to e.574

To find the right intercept of v, we need to find the first vertex u of Tb575

on the shortest path, Pv,b, from v to b; the intersection of the extension of576

vu and A corresponds to pcv. Note that vu is tangent to a convex chain of Tb577

at point u, specifically the chain capturing the shortest path from q to b in578

Tb. Hence, we can find pcv by finding the tangent from v to that convex chain579

while traversing the chain starting at q. Moreover, the vertex u is located on580

the portion of the chain from q to πb(t). Due to the structure of the shortest581

paths, it is an easy observation that this subchain of Tb will not be revisited582

while treating an edge of T to the right of e (see Figure 14). Since the total583

complexity of the convex chains is O(n) it follows that over all edges of T we584

find pcv in amortized O(1) time.585

The visibility of an edge e = tq from the last guard (gi) placed on A586

can be found by comparing the x-coordinate of guard gi, x(gi), with the587

left intercept of point q, x(poq), and the left intercept of point t, x(pot). Line588

segment tq is (a) completely visible from gi if x(pot) ≤ x(gi), (b) not visible589

from gi if x(gi) < x(poq) (c) partially visible from gi if x(poq) ≤ x(gi) < x(pot).590

To find the partially visible sub-segment q′q of tq we find vertex u of Ta on591

the shortest path from t to πa(q) such that the line segment ugi joining u592

and gi is tangent to the convex chain of Ta at point u. The intersection of593

the line supporting giu with tq corresponds to point q′.594

22

e1 e2

e3 e4

e5

e6

e7

e8

a′
b′

pc3 pc1 pc6 pc8 pc5a b

Figure 15: Terrain T with right intercept of each edge.

Lemma 8. For an edge e = tq of T that is partially visible from guard gi the595

point q′, defining the visible portion q′q of tq from gi, can be found in O(1)596

amortized time.597

Proof. To find the vertex u defining the tangent giu we traverse the convex598

subchain of Ta from t to u. Obviously, no other point on T to the right of q599

would use this subchain in a shortest path to gi or any other point on A to600

the right of gi. Since the total complexity of the convex chains of Ta is O(n),601

it follows that over all edges of T we find partial visibility in amortized O(1)602

time.603

For an example, see Figure 15. We start with e1 and store pce1 (right604

intercept of e1) as r
′
. We move to the next line segment, e2, and pce1 = pce2 . For605

edge e3, p
c
e3
< pce1 , we update r

′
= pce3 . We move to the edge e4 and pce3 = pce4 .606

For e5, p
c
e5
> r

′
, hence, no update is necessary. Moreover, x(v5) ≤ r

′
< x(v6).607

Hence, we place the first guard at r
′
= pce3 .608

The algorithm visits each edge e of T only once, and the total time spent609

while visiting a line segment can be split into the following steps:610

1. The time taken to decide the visibility of e from the last placed guard.611

2. The time to find the partially visible segment of e, if needed.612

3. The time to find the right intercept of a point v on edge e.613

4. The time to compare pce or pcv with r
′
.614

23

Since we know the location of the last guard on A the first step takes615

constant time. The second step and the third step take O(1) amortized time616

(see Lemma 7 and Lemma 8). The last step takes constant time. Hence, the617

total running time of the algorithm is O(n).618

Theorem 3. The algorithm presented solves the ATGP(T,A) problem in619

O(n) time.620

4. Conclusion and Discussion621

We presented an optimal, linear-time algorithm for guarding a 1.5D ter-622

rain from an altitude line (the ATGP) and for the art gallery problem in623

uni-monotone polygons and monotone mountains. We further showed that624

the ATGP and the AGP in uni-monotone polygons are equivalent. We proved625

optimality of our guard set by placing a maximum witness set (packing626

witnesses) of the same cardinality. Hence, we established that both uni-627

monotone polygons and monotone mountains are perfect.628

In our algorithm, we compute the optimal guard set for a given altitude629

line A. The question at which heights ah of A the minimum guard set has a630

specified size k ≥ 1 is open.631

Moreover, while guarding a 2.5D terrain from an altitude plane above the632

terrain is NP-hard, it would be interesting to find approximation algorithms633

for that case.634

Acknowledgements. We thank the anonymous reviewers for helpful comments.635

VP and CS are supported by Swedish Transport Administration (Trafikver-636

ket) and Swedish Research Council (Vetenskapr̊adet).637

[1] J. O’Rourke, Art Gallery Theorems and Algorithms, International Series638

of Monographs on Computer Science, Oxford University Press, New639

York, 1987.640

[2] E. Krohn, B. J. Nilsson, The complexity of guarding monotone polygons,641

in: Proc. of the 24th Canadian Conference on Comp. Geometry, 2012,642

pp. 167–172.643

[3] J. King, E. Krohn, Terrain guarding is NP-hard, SIAM Journal on Com-644

puting 40 (5) (2011) 1316–1339.645

24

[4] R. Motwani, A. Raghunathan, H. Saran, Covering orthogonal polygons646

with star polygons: The perfect graph approach, J. Comput. Syst. Sci.647

40 (1) (1990) 19–48.648

[5] C. Worman, J. M. Keil, Polygon decomposition and the orthogonal art649

gallery problem, Int. J. Comput. Geometry Appl. 17 (2) (2007) 105–138.650

[6] B. Ben-Moshe, M. J. Katz, J. S. B. Mitchell, A constant-factor approx-651

imation algorithm for optimal 1.5D terrain guarding, SIAM Journal on652

Computing 36 (6) (2007) 1631–1647.653

[7] J. King, A 4-approximation algorithm for guarding 1.5-dimensional ter-654

rains, in: LATIN Theoretical Informatics, 7th Latin American Sympo-655

sium, 2006, pp. 629–640.656

[8] K. L. Clarkson, K. R. Varadarajan, Improved approximation algorithms657

for geometric set cover, Discrete & Computational Geometry 37 (1)658

(2007) 43–58. doi:10.1007/s00454-006-1273-8.659

URL http://dx.doi.org/10.1007/s00454-006-1273-8660

[9] J. King, Errata on “a 4-approximation for guarding 1.5-dimensional ter-661

rains”, http://www.cs.mcgill.ca/~jking/papers/4apx_latin.pdf,662

visited 2015-08-20.663

[10] K. M. Elbassioni, E. Krohn, D. Matijevic, J. Mestre, D. Severdija, Im-664

proved approximations for guarding 1.5-dimensional terrains, Algorith-665

mica 60 (2) (2011) 451–463.666

[11] M. Gibson, G. Kanade, E. Krohn, K. Varadarajan, An approximation667

scheme for terrain guarding, in: I. Dinur, K. Jansen, J. Naor, J. Rolim668

(Eds.), Approximation, Randomization, and Combinatorial Optimiza-669

tion. Algorithms and Techniques, Springer Berlin Heidelberg, Berlin,670

Heidelberg, 2009, pp. 140–148.671

[12] M. Gibson, G. Kanade, E. Krohn, K. R. Varadarajan, Guarding terrains672

via local search, Journal of Computational Geometry 5 (1) (2014) 168–673

178.674

URL http://jocg.org/index.php/jocg/article/view/128675

[13] F. Khodakarami, F. Didehvar, A. Mohades, A fixed-parameter algorithm676

for guarding 1.5d terrains, Theoretical Computer Science 595 (2015)677

25

130–142. doi:10.1016/j.tcs.2015.06.028.678

URL http://dx.doi.org/10.1016/j.tcs.2015.06.028679

[14] G. Martinović, D. Matijević, D. Ševerdija, Efficient parallel implementa-680

tions of approximation algorithms for guarding 1.5D terrains, Croatian681

Operational Research Review 6 (1) (2015) 79–89.682

[15] S. Friedrichs, M. Hemmer, J. King, C. Schmidt, The continuous 1.5D683

terrain guarding problem: Discretization, optimal solutions, and PTAS,684

JoCG 7 (1) (2016) 256–284.685

[16] S. Eidenbenz, Approximation algorithms for terrain guarding, Informa-686

tion Processing Letters 82 (2) (2002) 99–105.687

[17] F. Hurtado, M. Löffler, I. Matos, V. Sacristán, M. Saumell, R. I. Silveira,688

F. Staals, Terrain visibility with multiple viewpoints, International Jour-689

nal of Computational Geometry & Applications 24 (4) (2014) 275–306.690

doi:10.1142/S0218195914600085.691

URL http://dx.doi.org/10.1142/S0218195914600085692

[18] Y. Amit, J. S. Mitchell, E. Packer, Locating guards for visibility cov-693

erage of polygons, International Journal of Computational Geometry &694

Applications 20 (05) (2010) 601–630.695

[19] C. Berge, Färbung von graphen, deren sämtliche bzw. deren ungerade696

kreise starr sind, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-697

Natur. Reihe (1961) 114115.698

[20] B. Nilsson, Guarding art galleries; methods for mobile guards, Ph. D.699

thesis, Lund University.700

[21] J. O’Rourke, Vertex π-lights for monotone mountains, in: Proc. 9th701

Canad. Conf. Comput. Geom., 1997, pp. 1–5.702

[22] S. K. Ghosh, D. M. Mount, An output-sensitive algorithm for computing703

visibility graphs, SIAM Journal on Computing 20 (5) (1991) 888–910.704

[23] J. Hershberger, S. Suri, A pedestrian approach to ray shooting: Shoot705

a ray, take a walk, Journal of Algorithms 18 (3) (1995) 403–431.706

26

[24] D. Avis, G. T. Toussaint, An optimal algorithm for determining the707

visibility of a polygon from an edge, IEEE Trans. Computers 30 (12)708

(1981) 910–914.709

[25] D. Z. Chen, O. Daescu, Maintaining visibility of a polygon with a moving710

point of view, Inf. Process. Lett. 65 (5) (1998) 269–275.711

27

INPUT : Terrain T , altitude line A, its leftmost point a, sets
C,O,S of closing, opening, and soft opening points for all
edges in T , all ordered from left to right.

OUTPUT: An optimal guard set G.
1 Eg = E(T) // set of edges that still need to be guarded

2 i := 1
3 g0 := a // the point on A before the first guard is a, g0

is NOT a guard

4 while Eg 6= ∅ // as long as there are still unseen edges

5 do
6 1. Move right from gi−1 along A until a closing point c ∈ C is hit
7 2. Place gi on c, G = G ∪ {gi}, i := i+ 1
8 3. for all e ∈ Eg // gi ≤ pce by construction

9 do
10 if poe ≤ gi then
11 Eg = Eg \ {e} // if all of e is seen, delete it

from Eg

12 C = C \ {pce} // and delete the closing point from

the event queue

13 else
14 if pse ≤ gi // if gi can see the right point of e
15 then
16 Shoot a visibility ray from gi onto e // We shoot a

ray from gi though all vertices to the right

of it, and then check if one of them is the

occluding vertex, we use the ray through this

occluding vertex

17 Let the intersection point be re // all points on e
to the right of re (incl. re) are seen

18 Identify the mark me immediately to the right of re on e
19 Shoot a ray r from re through vme

20 Let pce′ be the intersection point of r and A // pce′ is

the closing point for the still unseen

interval e′ ⊂ e
21 C = C ∪ {pce′} \ {pce} // insert and delete, keeping

queue sorted

22 Eg = Eg ∪ {e′} \ {e}

Algorithm 1: Optimal Guard Set for ATGP28

