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Abstract

Given a simple polygon P , the minimum convex cover problem seeks to cover P with the fewest
convex polygons that lie within P . The maximum hidden set problem seeks to place within P a max-
imum cardinality set of points no two of which see each other. We give constant factor approximation
algorithms for both problems. Previously, the best approximation factor for the minimum convex cover
was logarithmic; for the maximum hidden set problem, no approximation algorithm was known.

1 Introduction

In this paper we study two fundamental optimization problems in a geometric setting. One is a set cover
problem: Cover a simple polygon P with the fewest convex polygons (we denote that number cc(P )) that
lie within P ; this is the convex cover problem for a simple polygon. We also study a maximum independent
set problem: Pack into a simple polygon P as many points as possible so that no two points see each other
(points p, q ∈ P are visible, or see each other, if the segment pq lies within P ); this is the hidden set problem
for a simple polygon and we let hs(P ) denote the maximum size of a hidden set. The hidden set problem is
the maximum independent set problem in the “point visibility graph” of P , whose nodes are all points (the
continuum) in P and whose edges link pairs of points that are visible to each other.

Minimum convex cover has been studied for many years, beginning with the early work of Pavlidis [27].
Most recently, Abrahamsen [1] has shown the problem to be ∃R-complete. In terms of approximation
algorithms to compute cc(P ), the best result is an O(log n)-approximation algorithm, with running time
O(n29 log n) where n is the complexity of P , found some decades ago by Eidenbenz and Widmayer [12], who
also show that the problem is APX-hard. As our main result, we give the first constant-factor approximation
algorithm for computing cc(P ); we also drastically improve the running time.

Finding hs(P ) is APX-hard [11] and no prior approximation algorithm has been known for computing
hs(P ) in general. (Alegŕıa, Bhattacharya and Ghosh gave a 1/4-approximation [3] for finding a maximum
hidden set of vertices.) We give the first approximation algorithm for computing hs(P ); our approximation
factor is constant.

Other Related Work. A related covering problem that has been extensively studied is the guarding
problem [32, Chapter 33], in which we seek to cover a polygon P with the fewest star-shaped polygons, each
being a visibility polygon of some point (a “guard”) within P . This problem has long been known to be
NP-hard and has recently been shown to be ∃R-complete [2, 29]. There have been recent advances also in
computing approximately optimal guard sets [5, 10, 19]. The problem of convex covering can be contrasted
with the problem of partitioning a simple polygon into a minimum number of (interior-disjoint) convex
polygons; the convex partitioning problem is solvable exactly in polynomial time, as partitioning allows one
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‡Linkóping University

1



to use dynamic programming to optimize, both in the case of partitioning with diagonals (chords between
two vertices of P ) [23] and in the case of general partitions, allowing Steiner points [7]. (There is also a very
simple 4-approximation for convex partitioning of P that runs in linear time [22].)

The hidden set problem is a special case of a geometric maximum independent set problem: find a
maximum independent set in the (continuous, infinite) graph whose nodes are the points within P and whose
edges are determined by interpoint visibility. Given the difficulty of computing maximum independent sets in
general graphs, even approximately [18,24], geometric instances of maximum independent set have attracted
considerable attention; e.g., there has been recent progress in computing maximum independent sets among
axis-parallel rectangles in the plane, including new, constant-factor approximation algorithms [17,25].

2 Preliminaries and an Overview

Let P be a simple polygon with n vertices, v1, v2, . . . , vn (ordered clockwise). The edges of P are denoted
ei = vivi+1, for 1 ≤ i ≤ n, with vn+1 = v1. We consider P to be a closed region, including the boundary,
denoted ∂P .

Two points p, q ∈ P are said to be visible (or to see each other) if the line segment pq lies within P .
A simple polygon P is said to be weakly visible from a line segment σ if every point of P sees at least one
point of σ. In this paper, whenever we say that a polygon P is weakly visible we will mean that it is weakly
visible from an edge W of P that is also an edge of the convex hull of P .

A hidden set in P is a set S of points in P such that no two points in S see each other. A convex cover of
P is a set of convex polygons, each lying fully within P , whose union equals P . Let hs(P ) and cc(P ) denote
the cardinalities of a maximum hidden set and a minimum convex cover of P , respectively. Since there is at
most one hidden point within any convex subset of P , we must have the following basic inequality:

hs(P ) ≤ cc(P ). (1)

Overview of Results and Methods. Our main results are as follows:
(1) We give a polynomial-time 6-approximation algorithm for computing cc(P ) for a simple polygon P ;

see Theorem 4.2 of Section 4. We do this in two parts: First, we give a polynomial-time 2-approximation
algorithm (Theorem 3.5, Section 3) for computing cc(P ) in the case that P is weakly visible (from a convex
hull edge, W = en = vnv1, of P ). Second, we utilize a decomposition of P into weakly visible subpolygons,
the window partition of P , and argue (Lemma 4.1(1)) that any convex body within P intersects at most 3
subpolygons. The 2-approximation result in weakly visible P is obtained by formulating the coverage of the
edges ei (for 1 ≤ i ≤ n − 1) of P as a problem of computing a minimum path cover in a directed acyclic
graph (DAG) whose nodes correspond to edges of P and whose arcs correspond to pairs of “strongly visible”
edges whose convex hull lies within P . Each path π in the DAG corresponds to a convex polygon, Pπ, within
P . We then show (Lemma 3.4) that for any set of k paths in a path cover, there is a convex cover of size 2k.
One can compute a minimum path cover of a DAG in polynomial time; if it has k paths, then, by Dilworth’s
theorem, there is an “antichain” of size k, which corresponds to a set of k edges of P that are “independent”
in the sense that no two of them are strongly visible. Finally, we argue (Lemma 3.6) that there are in fact k
points, one on each edge of the antichain, that form a hidden set in P , showing that hs(P ) ≥ k, so cc(P ) ≥ k,
implying that our set of 2k convex polygons covering P is a 2-approximation (Theorem 3.8).

(2) We give a polynomial-time (1/8)-approximation for computing hs(P ) (see Theorem 4.2). This is
again obtained in two parts, first obtaining a (1/2)-approximation (Theorem 3.9) in weakly visible polygons
(utilizing the antichain result for an optimal path cover), and then using the fact (Lemma 4.1(2)) that a gen-
eral polygon P can be decomposed (using the window partition) into 4 classes of weakly visible subpolygons,
with the property that no point in one class can see any point within another class.
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3 Weakly Visible Polygons

In this section, we assume that P is a weakly visible polygon, weakly visible from the edge W = vnv1, which
is an edge of the convex hull of P . Without loss of generality, we assume that W is horizontal and that P
lies above W ; see Fig. 1. Let C denote the polygonal chain, with vertices (v1, v2, . . . , vn), that comprises
the boundary of P except for the one edge W . For two points a, b ∈ C the portion of C between a and b is
denoted C(a, b), and for a, b ∈ P the shortest path within P from a to b is denoted SP (a, b).

A basic property of weakly visible polygons is that for checking the visibility between two points a, b ∈ C
it suffices to check that the visibility is not blocked by C(a, b). Formally:

Fact 3.1. [Chord property] If ab ∩ C(a, b) = {a, b}, then a and b see each other.

Proof. It is known that, for a weakly visible polygon P , SP (a, b) bends only on vertices of C(a, b) [15,
Lemma 1]; in particular, if the shortest path does not touch any vertex of C(a, b), the shortest path has no
bends, i.e., is a segment.

3.1 Edges as a poset

Consider the directed graph G whose nodes are the edges, e1, e2, . . . , en−1, of C. The (directed) arcs of G
are ordered pairs (ei, ej) such that i < j and the convex hull of the edges ei, ej lies within P (Fig. 1). For
a (directed) path π = (ei1 , ei2 , . . . , eim) in G let Pπ be the convex hull of the edges ei1 , . . . , eim ; we define
the base of the convex polygon Pπ to be the segment vi1vim+1. We observe that paths in G define convex
polygons in P :

Lemma 3.2. Pπ ⊆ P .

Proof. Since any two consecutive edges eik , eik+1
in π are connected by an arc of G, the convex hull of the

edges eik , eik+1
belongs to P ; in particular, the subchain C(vik , vik+1

) of the boundary of P does not intersect
Pπ, implying overall that the subchain C(vik , vim+1) does not intersect the base vi1vim+1. Thus, by the chord
property (Fact 3.1), vi1 and vim+1 see each other, implying that the boundary of P does not intersect the
boundary of Pπ.

For every arc (ei, ej) of G we have i < j; thus, the graph G is a directed acyclic graph (DAG), whose
transitive closure defines a partially ordered set (poset). In fact, Lemma 3.2 implies that G is its own
transitive closure: if (ei, ej) and (ej , ek) are arcs of G, then (ei, ek) is also an arc of G. A path cover of a
directed graph is a set of directed paths such that every node of the graph belongs to (at least) one of the
paths; an antichain is a set of nodes such that no two nodes in the set are connected by a directed path.
Since G is a DAG, both a minimum path cover, Π, of G and a maximum antichain, I, can be computed in
polynomial time by the folklore reduction to a maximum bipartite matching [13]. By Dilworth’s theorem,
the number |Π| of paths equals the number |I| of nodes (edges of P ) in G; let k = |Π| = |I|.

For each path π ∈ Π, we define below (Section 3.2) two associated convex polygons within P . We then
prove (Lemma 3.4) that these 2k convex polygons cover P . In Section 3.3 we show how to obtain a set H
of k hidden points in P . Thus, using inequality (1), we get that k ≤ hs(P ) ≤ cc(P ) ≤ 2k, showing that the
2k convex polygons and the k hidden points that we compute yield approximations, with factor 2, for the
minimum convex cover and the maximum hidden set of P . This is our main technical result.

3.2 A convex cover based on path cover

For any point p ∈ P , we let ℓprp ⊆ W be the subset of W that is seen by p, with ℓp (resp., rp) the left (resp.,
right) endpoint. We define the polygon, P ′

π ⊇ Pπ, to be the union of Pπ and the triangle, abpab, where pab is
the point where the segments bℓb and ara cross (see Fig. 1). (They must cross, since ara contains a chord,
av, that separates b from W .) An easy observation is:

Claim 3.3. Polygon P ′
π is convex.
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Figure 1: A weakly visible polygon. Arcs of the graph G connect pairs of edges whose convex hull is in P ;
some arcs are shown in purple, forming the path π. The convex polygon P ′

π is the union of Pπ (red) and the
blue triangle abpab.

Proof. Points along the edge, ei1 = (a = vi1 , vi1+1), incident on a, must see W (since P is weakly visible
from W ), implying that the extension of ei1 into P cannot pass above the segment av (which contains pab),
as this segment separates ab from W . Thus, the vertex a is convex in polygon P ′

π. The same argument
applies to b.

While the convex polygons Pπ corresponding to paths π in a path cover Π will necessarily cover the edges
of C, and the polygons P ′

π will cover even more of the interior of P , they need not cover all of P ; see Fig. 2
(left and middle). However, by adding as well a triangle, bℓbrb, for each base ab, we do obtain a covering of
P (see Fig. 2, right), as our next lemma shows.

π2

π1

π3

π4 π5

aπ1

bπ1

aπ3

bπ3 bπ4
aπ5

bπ2

bπ5

aπ2

aπ4
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π1

π3

π4 π5

paπ3bπ3

paπ4bπ4

paπ2bπ2

π2

π1

π3

π4 π5

`bπ4
`bπ3

Figure 2: Left: The convex polygons Pπ for paths π ∈ {π1, π2, . . . , π5} in a path cover of C. Middle: The
convex polygons P ′

π obtained by augmenting Pπ with the blue triangle abpab; note that some (white) portions
of P are uncovered. Right: The covering using polygons P ′

π and the (green) triangles bℓbrb.

Lemma 3.4. For any set Π of paths π that form a path covering of the edges ei, i = 1, 2, . . . , n − 1, of a
weakly visible polygon P , the polygon P is covered by the union, over π ∈ Π, of the polygons P ′

π together with
the triangles bπℓbπrbπ .

Proof. Since we assume that Π is a path covering, all of the edges ei, for 1 ≤ i ≤ n − 1, of P are covered
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by the convex polygons Pπ and thus by the (superset) convex polygons P ′
π. It remains to argue that the

interior of P , as well as W , is covered by the polygons P ′
π and the specified triangles.

Let p ∈ P be any point interior to P or interior to W . Let ℓ′p (resp., r′p) be the point on the boundary of
P first hit by a ray from p in the direction away from ℓp (resp., rp), along the line through p and ℓp (resp.,
rp). Note that it could be that ℓp = v1 or that rp = vn, or both. (If p is interior to W , then r′p = v1 and
ℓ′p = vn.) Refer to Fig. 3.

If p lies within one of the convex polygons Pπ, we are done (since P ′
π ⊇ Pπ). Otherwise, we know that

the segment pr′p (as well as the segment pℓ′p) must intersect at least one base, aπbπ, of a convex polygon Pπ,
for π ∈ Π, since its endpoint r′p lies on the boundary of P , and the convex polygons Pπ cover all of the edges
ei (1 ≤ i ≤ n− 1). There are two cases:

(1) There is a base ab = aπbπ (of some Pπ for π ∈ Π) that intersects both pr′p and pℓ′p. In this case, we
claim that p must lie within the (blue) triangle abpab. The point a and the edge W lie on the same
side of the chord vr′p; thus, ara cannot cross the chord vr′p, implying that the chord vr′p (and thus the
point p) must lie above the line through a and ra. Similarly, p must lie above the line through b and
ℓb. Thus, p lies within the triangle abpab and thus within P ′

π. See the figure on the left in Fig. 3.

(2) There is not a base aπbπ that intersects both pr′p and pℓ′p. Then, there must be a base ab = aπbπ (of
some Pπ) that is crossed by the segment pr′p, with the endpoint b ∈ C(r′p, l

′
p). We distinguish two

subcases:

(a) Point p sees b. In this case, p is covered by the corresponding triangle bℓbrb since the ray from b
through p hits W .

(b) Point p does not see b. Then, the (unique) shortest path in P from p to b is not a line segment;
let pvi be the edge of this shortest path that is incident to p, with vi a (reflex) vertex of P . Note
that vi ∈ C(b, vn). Therefore, the two edges incident to vi both lie to the right of the ray from
p to vi. Then the chord, viαi, that arises from extending the edge vi−1vi beyond vi to a point
αi ∈ ∂P must have its endpoint αi on the edge W : the path viprp within P separates the interior
of viαi from the boundary C(vi, vn), and αi cannot lie on the boundary portion C(v1, vi−1), since
this would imply that points interior to vi−1vi cannot see W (since the chord viαi would then
separate vi−1vi from W ). This implies that the out-degree of ei−1 = vi−1vi in G is zero, so in the
path cover, the vertex vi = bπ′ must be the base endpoint for the path π′ that covers edge ei−1.
We conclude that point p is covered by the triangle bπ′ℓbπ′ rbπ′ .

Thus, every point p ∈ P is covered.

p

a

b

ℓp

ℓ′p
r′p

rp Wℓb ra

v

p

a

b

ℓp

ℓ′p
r′p

rp Wℓb

v

p

a

b

ℓp

ℓ′pr′p

rp W

v

vi

vi−1

αirb

pab

rb

Figure 3: Proof of the Lemma. Left: Case (1); Middle: Case (2a); and Right: Case (2b).

The following theorem is a consequence of the lemma and the fact that optimal path covers for a DAG
can be computed in polynomial time:
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Theorem 3.5. For a weakly visible polygon P , there is a polynomial-time algorithm to compute a set of at
most 2k convex polygons within P that cover P , where k is the size of an optimal path cover of G.

3.3 A hidden set from an antichain

Let I be an antichain in G. We show how to place a set H of |I| points such that no two points from H see
each other.

Lemma 3.6. Given an antichain I in G, we can compute in polynomial time a set H of |I| points, each
interior to one of the edges of I, such that H is a hidden set (no two points of H are visible to each other).

Proof. Let I = {ei1 , ei2 , . . . , eim}, with 1 ≤ i1 < i2 < · · · < im ≤ n − 1. We will place our hidden set
at points sℓ ∈ eiℓ or tℓ ∈ eiℓ , for ℓ = 1, . . . ,m (note that ℓ enumerates the edges in I, not in C – this
way we use fewer double subscripts), which are points “close” to the vertices of the edges eiℓ ∈ I (but not
equal to the vertices), defined as follows. Compute the visibility graph (VG) of P : the graph edges connect
mutually visible vertices of P ; in particular, each edge of P is an edge of VG. Extend each edge of VG
until the extension hits the boundary of P (and further extension would enter the exterior of P ), and let
Yℓ ⊂ eiℓ , ℓ = 1 . . .m, denote the set of points where extended visibility graph edges hit the edge eiℓ (Fig. 4,
left). In addition, for all 1 ≤ j < k ≤ m, compute shortest paths SP (vij+1, vik) between the closest (along
C) endpoints of the edges eij , eik ∈ I; if SP (vij+1, vik) has exactly one vertex u between vij+1 and vik , and
if both edges eij , eik lie below vij+1vik (Fig. 4, middle), then add to Yj (resp. Yk) the points where the line
through u parallel to vij+1vik intersects (the supporting line of) eij (resp. eik) if they exist. On each edge
eiℓ ∈ I we keep only the two extremal points s′ℓ, t

′
ℓ from Yℓ (s

′
ℓ ∈ Yℓ ∩ eiℓ is closest to viℓ , and t′ℓ ∈ Yℓ ∩ eiℓ is

closest to viℓ+1
). Finally, sℓ (resp. tℓ) is the midpoint of s′ℓviℓ (resp. t′ℓviℓ+1

).

vij+1 vik

u
u

t`

s`1

s`3

s`2

vi`+1
vi`3

Figure 4: Defining sℓ, tℓ on edges from I (red). Left: Some of the points added on edge e ∈ I. Middle: Points
added if SP (vij+1, vik) = vij+1 − u− vik . Right: C(tℓ, u) is visibly obstructed from C(u, sℓ′) by vertex u.

Fact 3.7. For any 1 ≤ ℓ < ℓ′ ≤ m, there exists a vertex u ∈ C such that no point in C(tℓ, u) (excluding u)
sees any point in C(u, sℓ′) (excluding u).

Proof. The shortest path SP (viℓ+1, viℓ′ ) follows VG and makes only left turns at vertices of C [15, Lemma 2].
If the shortest path has internal vertices, then u is any such internal vertex (see ℓ′ = ℓ1 or ℓ′ = ℓ2 in Fig. 4,
right for an example). If viℓ+1 and viℓ′ see each other, then at least one edge eiℓ , eiℓ′ (say, eiℓ) lies above
(the supporting line of) viℓ+1viℓ′ , for otherwise, by the chord property (Fact 3.1) every point on eiℓ would
see every point on eiℓ′ , meaning that the convex hull of the edges would lie within P , so they would be
connected by an arc in G. Then u = viℓ+1 (see point sℓ3 in Fig. 4, right for an example)

Now, for |I| = m = 1 the lemma is trivially true. We prove that for m ≥ 2 we can choose a set H of m
hidden points, one per edge in I, from the following 2m−2 points: t1∪{sℓ, tℓ}m−1

ℓ=2 ∪sm. That is, t1, sm ∈ H
(we do not place at s1 or tm), and each other edge eℓ contributes either sℓ or tℓ.

The proof is by induction on m. The base (m = 2) follows from Fact 3.7: the points t1 and sm = s2 are
visibly obstructed from each other by the vertex u (refer to Fig. 4, right). For m > 2, also apply Fact 3.7,
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Figure 5: An example weakly visible polygon, P , in which we show a hidden set and a convex cover. Top
Left: An antichain in G. Top Right: All P ′

π for a path cover in G. Bottom Left: A hidden set in P . Bottom
Right: A convex cover of P .

and let u be a vertex that (visually) separates C(t1, u) from C(u, sm). Let I1 ⊂ I be the edges of I that
lie in C(vi1+1, u), together with the edge ei1 ; note that I1 is a proper subset of I (|I1| < m) because the
last edge eim is not in I1, and thus we can compute the hidden set H1 (with |H1| = |I1|) for it by the
inductive hypothesis. Similarly, compute the hidden set H2 (with |H2| = |I2|) for the edges I2 = I \ I1
that lie in C(u, vim) plus the edge eim . By Fact 3.7, the union H1 ∪H2 is the required hidden set H with
|H| = |H1|+ |H2| = |I|,

See Fig. 5 for an example illustrating an antichain of edges, the convex polygons P ′
π, a hidden set on ∂P ,

and a convex cover of P , for a weakly visible polygon P .

3.4 Resulting approximations for cc(P ) and hs(P ) in weakly visible polygons

Theorem 3.8. For a weakly visible polygon P , a convex cover B such that |B| ≤ 2 · cc(P ) (i.e., a 2-
approximation) can be found in polynomial time.

Proof. Theorem 3.5 shows that we can find a convex cover, B, which has at most twice as many pieces as
the size of the minimum path cover of the poset of the edges of P . Let k be this size, so 2k pieces. From
Lemma 3.6, we know there exists a hidden set H that is at least as large as the longest antichain in the
poset of the edges of P . By Dilworth’s theorem [9, Theorem 1.1], we know that size of the longest antichain
is equal to the size of the minimum path cover, therefore |H| = k. This gives us the following inequality:

k = |H| ≤ hs(P ) ≤ cc(P ) ≤ |B| = 2k, (2)

which implies that the convex cover found in Theorem 3.5 is a 2-approximation.

Theorem 3.9. For a weakly visible polygon P , a hidden set H such that |H| ≥ 1
2 · hs(P ) (i.e., a 1/2-

approximation) can be found in polynomial time.

Proof. The chain (2) implies that k = |H| ≥ 1
2 · hs(P ).

4 General simple polygons

In this section, P is an arbitrary simple polygon, with n vertices. We utilize concepts related to “link
distance” within P , so we begin with a brief review of these concepts and terminology.

A minimum-link path between points s, t in P is an s-t path with a minimum number of edges (links);
that number is the link distance between s and t. Algorithms for computing link distance [14,21,30] employ
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Figure 6: Left: Staged illumination in a simple polygon (Figure 3 from [26]): The windows are yellow. Right:
Right (red) and left (blue) windows of the weak visibility polygon (gray) of the yellow window.

the “staged illumination” paradigm (see, e.g., the handbooks [28, Chapter 12] and [32, Chapter 31.3]): at
the first stage, a light source at s illuminates the visibility polygon of s – this is the set of points with link
distance 1 from s; at the beginning of any subsequent stage, the boundary between the illuminated and the
dark portions of P consists of a set of windows, each being a segment (a chord of P ), with one endpoint being
a reflex vertex of P and the other endpoint on ∂P , which bounds the weak visibility polygon of the region
illuminated at the previous stage (we assume that the window is part of the cell that created it, i.e., that
the illuminated region is closed while the dark region does not include its boundary with the illuminated
region); see Fig. 6 (left).

The link distance map, denoted LDM(s), with respect to the source point s ∈ P is the decomposition
of P into cells such that the link distance from s to any point within one cell is the same. The LDM is
a by-product of the staged illumination: the edges of the map are the windows (because the windows are
pairwise-disjoint, the LDM is also called a “window partition” [4, 31]). Each cell of the map is labeled with
the link distance of its points to s. The cells are naturally organized into a (dual) tree T , so that the path
from s arrives to a cell through the window from its parent. Further, the windows (and hence the cells)
can be classified as being left or right [3], depending on whether the child face is on the left or right of the
window (Fig. 6, right). Let R1 be the left cells on even levels of T ; let R2, R3, R4 be the right cells on even
levels, left cells on odd levels, and right cells on odd levels, respectively.

We take an arbitrary convex vertex s of P and compute LDM(s), which can be done in O(n) time [31].
The following properties of the LDM are important for us:

Lemma 4.1. (1) Any convex polygon K ⊆ P intersects at most 3 cells of LDM(s).
(2) For any i = 1, 2, 3, 4, no point in one cell from Ri sees a point in another cell from Ri, i.e., if f, f

′ ∈ Ri

are two cells and p ∈ f, p′ ∈ f ′ are two points in the cells, then p does not see p′.
(3) Every cell of LDM(s) is a weakly visible polygon.

Proof. (1) Among the cells of LDM intersected by K, let f be a face with minimum associated link distance
from s; let ℓ denote this distance (the number of links in a minimum-link path from s to any point in f).
Then K cannot intersect the parent face of f (since its link distance is ℓ − 1). Since K is convex, it can
intersect at most one left window and at most one right window of f , for otherwise the intersection of K and
the supporting line of a window would consist from more than 1 connected component. Further, K cannot
intersect any grandchild face, f ′, of f , as this would imply, by the convexity of K, that there is a point in
f ′ at link distance ℓ + 1 from s– contradiction to the fact that the distance from s to points in f ′ is ℓ + 2.
Thus, K intersects at most 3 faces: f , at most 1 left child of f , and at most 1 right child of f .

(2) This is proved in [3] with respect to the vertices but applies more generally to all points in P ; the
proof is similar to the proof of (1) above: the segment between mutually visible points spans at most two
levels of the tree T (as level is equal to link distance from s), and points in two right cells (or two left cells)
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of the same level cannot see each other. Therefore, no point in a cell of Ri can see a point in a different cell
of Ri for any i = 1, 2, 3, 4.

(3) By definition, any cell is what is seen from a window w (the cell illuminated at stage 1 is the visibility
polygon of s, which may be viewed as a degenerate, length-0 window) and is thus weakly visible from w. A
cell illuminated at any stage k > 1, is on one side of the window and is thus a weakly visible polygon. Stage 1
starts from a convex vertex s; hence, one can draw a line through s so that P is on one side of the line: s is
thus a degenerate edge whose visibility polygon is on one side of the supporting line of the edge.

Lemma 4.1(1) implies that if we separately cover each cell of LDM(s) with convex polygons, we lose only
a factor of 3. Lemma 4.1(2) implies that we can separately find the hidden sets in each cell of the LDM (our
hidden set algorithm from Lemma 3.6 places hidden point only in the relative interior of the edges of the chain
C of a weakly visible polygon) and then choose the largest among the hidden sets in R1, R2, R3, R4, losing
only a factor of 4 (this is the same idea that was used in [3] to give a 1/4-approximation to the maximum
hidden set of vertices). Combining these with Lemma 4.1(3) and the constant-factor approximations for
convex cover and hidden set for weakly visible polygons (Section 3), we obtain our main result:

Theorem 4.2. A 6-approximate convex cover and a 1/8-approximate hidden set in a simple polygon can be
found in polynomial time.

Our algorithms run in O(n2+o(1)) time.

• Computing the visibility graph VG of P and determining where the extensions of the visibility graph
edges intersect edges of P takes O(|V G|) = O(n2) time [20].

• Minimum path cover of a DAG and a largest antichain in the poset can be found in O(n2+o(1)) time:
the problems reduce to maximum matching in a bipartite graph [13], which can be found by computing
a maximum flow, for which the fastest known algorithm [8] runs in O(n2+o(1)) time.

• Finally, computing the O(n) shortest paths for placing hidden points takes O(n2) time overall; a
shortest path in a simple polygon can be computed in linear time [16], [32, Chapter 31].

Note that we do convex cover and hidden set separately in every cell of the LDM: the work is charged to
the complexity of each cell, and the total complexity of the cells is O(n).

Remark: We can improve the running time for computing hs(P ) to O(n2), with a slightly different
approach: using arguments as we did for placing points sℓ and tℓ interior to edges of P , we can obtain, in
time O(n2) a set of O(n) points on the boundary of P that form a sufficient set for searching for a hidden
set of the same size as an antichain. Then, considering these boundary points as vertices of the polygon P ,
we can apply the quadratic time algorithm of [15] to compute an optimal hidden subset of vertices within a
weakly visible polygon.

5 Conclusion

We gave the first constant-factor approximation algorithms for convex cover and hidden set in simple
polygons. As a by-product of our algorithms, we obtain a combinatorial result (confirming a conjecture
from [6]) that cc(P ) ≤ 8hs(P ) for a simple polygon P ; for weakly visible simple polygons, we establish
that cc(P ) ≤ 2hs(P ). These combinatorial bounds may be of independent interest; improving them or
demonstrating their tightness is an open problem.

Perhaps the most intriguing open problem is whether our techniques can be extended to find an ap-
proximately optimal cover with star-shaped polygons, also known as the guarding problem or the Art
Gallery Problem. One stumbling block is devising a lower bound stronger than the “witness number”
of P (the maximum number of points having pairwise-disjoint visibility polygons): contrary to the inequal-
ity hs(P ) ≤ cc(P ) ≤ 8hs(P ) established in this paper, it is easy to provide examples in which the ratio of
the number of guards to witnesses reaches Ω(n). Nevertheless, our results may be encouraging in the sense
that ∃R-completeness does not preclude approximation.
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In polygons with holes, maximum hidden set cannot be nε-approximated for some ε > 0, unless P=NP
[11]; thus, our methods do not extend to approximating convex cover in polygons with holes. The only known
lower bound for the problem is APX-hardness and the best approximation ratio remains logarithmic [12].

Finally, an obvious open question is improving the approximation ratios. We believe that there are two
possible fronts to achieve this, either by placing hidden points in the interior of the weakly visible polygons
or by showing that only a fraction of the additional triangles are needed for the convex cover (note that, as
can be seen from Fig. 2, just taking maximal extensions of our polygons Pπ is not enough to cover P ). It
may also be interesting to improve the running time of our solutions or to give computational lower bounds.
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[3] Carlos Alegŕıa, Pritam Bhattacharya, and Subir Kumar Ghosh. A 1/4-approximation algorithm for
the maximum hidden vertex set problem in simple polygons. In European Workshop on Computational
Geometry, 2019.

[4] Esther M Arkin, Joseph SB Mitchell, and Subhash Suri. Logarithmic-time link path queries in a simple
polygon. International Journal of Computational Geometry & Applications, 5(04):369–395, 1995.

[5] Édouard Bonnet and Tillmann Miltzow. An approximation algorithm for the art gallery problem. arXiv
preprint arXiv:1607.05527, 2016.

[6] Reilly Browne and Eric Chiu. Collapsing the hidden-set convex-cover inequality. In Proceedings of
the 38th Computational Geometry Young Researchers Forum (CG:YRF 2022), pages 27–32. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2022.

[7] Bernard Chazelle and David P Dobkin. Optimal convex decompositions. In Machine Intelligence and
pattern recognition, volume 2, pages 63–133. Elsevier, 1985.

[8] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant
Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 2022 IEEE 63rd An-
nual Symposium on Foundations of Computer Science (FOCS), pages 612–623, 2022. doi:10.1109/

FOCS54457.2022.00064.

[9] R. P. Dilworth. A decomposition theorem for partially ordered sets. Ann. of Math., 51(1):161–166,
1950.

[10] Alon Efrat and Sariel Har-Peled. Guarding galleries and terrains. Information Processing
Letters, 100(6):238–245, 2006. URL: https://www.sciencedirect.com/science/article/pii/

S0020019006001359, doi:https://doi.org/10.1016/j.ipl.2006.05.014.

[11] Stephan Eidenbenz. Inapproximability of finding maximum hidden sets on polygons and terrains.
Computational Geometry, 21(3):139–153, 2002. URL: https://www.sciencedirect.com/science/

article/pii/S0925772101000293, doi:https://doi.org/10.1016/S0925-7721(01)00029-3.

10

https://doi.org/10.1145/3188745.3188868
https://doi.org/10.1145/3188745.3188868
https://doi.org/10.1109/FOCS54457.2022.00064
https://doi.org/10.1109/FOCS54457.2022.00064
https://www.sciencedirect.com/science/article/pii/S0020019006001359
https://www.sciencedirect.com/science/article/pii/S0020019006001359
https://doi.org/https://doi.org/10.1016/j.ipl.2006.05.014
https://www.sciencedirect.com/science/article/pii/S0925772101000293
https://www.sciencedirect.com/science/article/pii/S0925772101000293
https://doi.org/https://doi.org/10.1016/S0925-7721(01)00029-3


[12] Stephan J. Eidenbenz and Peter Widmayer. An approximation algorithm for minimum convex cover
with logarithmic performance guarantee. SIAM Journal on Computing, 32(3):654–670, 2003. arXiv:

https://doi.org/10.1137/S0097539702405139, doi:10.1137/S0097539702405139.

[13] Delbert R Fulkerson. Note on dilworth’s decomposition theorem for partially ordered sets. Proceedings
of the American Mathematical Society, 7(4):701–702, 1956.

[14] Subir Kumar Ghosh. Computing the visibility polygon from a convex set and related problems. Journal
of Algorithms, 12(1):75–95, 1991.

[15] Subir Kumar Ghosh, Anil Maheshwari, Sudebkumar Prasant Pal, Sanjeev Saluja, and C.E. Veni Mad-
havan. Characterizing and recognizing weak visibility polygons. Computational Geometry, 3(4):213–
233, 1993. URL: https://www.sciencedirect.com/science/article/pii/0925772193900104, doi:
https://doi.org/10.1016/0925-7721(93)90010-4.

[16] Leonidas J. Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert Endre Tarjan. Linear-
time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorith-
mica, 2:209–233, 1987. doi:10.1007/BF01840360.

[17] Waldo Gálvez, Arindam Khan, Mathieu Mari, Tobias Mömke, Madhusudhan Reddy Pittu, and Andreas
Wiese. A 3-Approximation Algorithm for Maximum Independent Set of Rectangles, pages 894–905. So-
ciety for Industrial and Applied Mathematics, 2022. URL: https://epubs.siam.org/doi/abs/10.
1137/1.9781611977073.38, arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611977073.

38, doi:10.1137/1.9781611977073.38.

[18] Johan Hastad. Clique is hard to approximate within n/sup 1-/spl epsiv. In Proceedings of 37th Con-
ference on Foundations of Computer Science, pages 627–636. IEEE, 1996.

[19] Simon Hengeveld and Tillmann Miltzow. A practical algorithm with performance guarantees for the
art gallery problem, 2023. arXiv:2007.06920.

[20] John Hershberger. An optimal visibility graph algorithm for triangulated simple polygons. Algorithmica,
4(1):141–155, 1989. doi:10.1007/BF01553883.

[21] John Hershberger and Jack Snoeyink. Computing minimum length paths of a given homotopy class.
Computational geometry, 4(2):63–97, 1994.

[22] Stefan Hertel and Kurt Mehlhorn. Fast triangulation of simple polygons. In Foundations of Computation
Theory: Proceedings of the 1983 International FCT-Conference Borgholm, Sweden, August 21–27, 1983
4, pages 207–218. Springer, 1983.

[23] Mark Keil and Jack Snoeyink. On the time bound for convex decomposition of simple polygons. In-
ternational Journal of Computational Geometry & Applications, 12(03):181–192, 2002. arXiv:https:

//doi.org/10.1142/S0218195902000803, doi:10.1142/S0218195902000803.

[24] Subhash Khot. Improved inapproximability results for maxclique, chromatic number and approximate
graph coloring. In Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pages
600–609. IEEE, 2001.

[25] Joseph S. B. Mitchell. Approximating maximum independent set for rectangles in the plane. 2021 IEEE
62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 339–350, 2021.

[26] Joseph S. B. Mitchell, Valentin Polishchuk, and Mikko Sysikaski. Minimum-link paths revisited. Com-
putational Geometry, 47(6):651–667, 2014. Special issue on EuroCG’11.

[27] T. Pavlidis. Analysis of set patterns. Pattern Recognition, 1(2):165–178, 1968. URL: https:

//www.sciencedirect.com/science/article/pii/003132036890006X, doi:https://doi.org/10.

1016/0031-3203(68)90006-X.

11

http://arxiv.org/abs/https://doi.org/10.1137/S0097539702405139
http://arxiv.org/abs/https://doi.org/10.1137/S0097539702405139
https://doi.org/10.1137/S0097539702405139
https://www.sciencedirect.com/science/article/pii/0925772193900104
https://doi.org/https://doi.org/10.1016/0925-7721(93)90010-4
https://doi.org/https://doi.org/10.1016/0925-7721(93)90010-4
https://doi.org/10.1007/BF01840360
https://epubs.siam.org/doi/abs/10.1137/1.9781611977073.38
https://epubs.siam.org/doi/abs/10.1137/1.9781611977073.38
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611977073.38
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611977073.38
https://doi.org/10.1137/1.9781611977073.38
http://arxiv.org/abs/2007.06920
https://doi.org/10.1007/BF01553883
http://arxiv.org/abs/https://doi.org/10.1142/S0218195902000803
http://arxiv.org/abs/https://doi.org/10.1142/S0218195902000803
https://doi.org/10.1142/S0218195902000803
https://www.sciencedirect.com/science/article/pii/003132036890006X
https://www.sciencedirect.com/science/article/pii/003132036890006X
https://doi.org/https://doi.org/10.1016/0031-3203(68)90006-X
https://doi.org/https://doi.org/10.1016/0031-3203(68)90006-X
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