CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

Well-Separated Multiagent Path Traversal

Gleb Dilman* David Eppstein®

Abstract

We consider moving points along a given path, with
a fixed speed, so that no two points ever come closer
than 1 (in the space into which the path is embedded,
not only along the path) while they follow the path (all
points traverse the path from start to finish). Since the
motion of any point along the path is fully determined
as soon as the point enters the path, our only decisions
are the times when to send the points at the start of
the path. We give algorithmic results for the problem of
scheduling as many points as possible, i.e., maximizing
the throughput.

1 Introduction

We study the problem of sending entities/agents along
a given path so that the agents stay well separated dur-
ing the motion. Such problem may arise, e.g., in an
amusement park where the given path represents a ride
followed by circular cabins or any entities which may
deviate from the path (the path may live in 3D and the
entities may represent 3D cabin volumes). Maximizing
the cabin throughput maximizes the profit of the ride
owner, and will also maximize the customers adrenaline,
as a dense packing of the cabins implies many near
misses along the ride. Similar problem appears when
putting large items on a conveyor. Last but not least,
the separation may be dictated by privacy or safety con-
cerns, e.g., due to the fear of infection spread between
two people or making two entities vulnerable to a sin-
gle point threat/eavesdropper, which affects a certain
radius around it.

For the most part, we focus on 2D; however our so-
lutions work in arbitrary dimensions. We use realRAM
model of computation — standard in computational ge-
ometry.

1.1 Related Work

To our knowledge, the considered problem was not stud-
ied before; however, a large body of work on similar

*School of Pedagogic Skills Center, gleb.dilman@gmail.com

fComputer Science Department, the University of California,
Irvine, eppstein@uci.edu

fCommunications and Transport Systems, ITN, Link&ping
University, valentin.polishchuk@alumni.stonybrook.edu

$Communications and Transport Systems, ITN, Linkoping
University, christiane.schmidt@liu.se

Valentin Polishchuk?

Christiane Schmidt?

questions exist:

e The Fréchet distance between two curves is the
length of the shortest leash needed for the person on
one curve to walk the dog following the other curve;
computing the distance is a classical motion coor-
dination problem (in Section 2 below, we make use
of the “free space diagram” from the paper [1] that
introduced Fréchet distance). More related to our
problem is the recent work on flipped Fréchet [10],
i.e., walking the dog while maximizing the person—
dog separation. The main difference from our setup
is that in both classical and flipped Fréchet settings;
the person and the dog are very powerful—they can
move with infinite acceleration; on the contrary, our
agents move with same speed—the only decision is
when to start moving (and even these starting times
are not arbitrary, in some versions of our problem).

e Agents (aircraft or trains, modeled by disks and
segments, resp.) following each other ducks-in-a-
row along given paths were considered in the CCCG
paper [16] (and also in [17]); the trains and aircraft
are still more powerful than our agents because
they have infinite acceleration (but their speed is
bounded). Heuristics were given in [11].

e Wire routing and moving a disk through a domain
(the former is hard [13] while the latter can be done
in polynomial time [6,7]) is also related to our prob-
lem. Finding paths for a “snake” (the Minkowski
sum of a segment and a disk, i.e., of a train and an
aircraft in terms of [16]) was also studied in [13]:
the problem is hard for long snakes, but is FPT-
tractable w.r.t. the snake length (i.e., the problem
is “length-tractable”), which is reminiscent of our
results: we show that our problem is hard, but ad-
mits a PTAS if the path length is small.

e Finding separated trajectories is a well studied
problem in robotics and computational geometry
[2,4,8,12,14,18,19]; our work is different in that
we do not find the agents’ paths (the path—one for
all agents—is given in the input, not sought in the
output; our problem is purely a scheduling one).

e From non-geometric literature, remotely related to
our paper is the work [5] on sets of words, avoiding
a set of forbidden Hamming distance subsequences
(the solution to our problem will hinge on defin-
ing forbidden intervals between the path-following
agents). Another non-geometric, scheduling prob-
lem is the “pinwheel problem” in which the goal

36'" Canadian Conference on Computational Geometry, 2024

is to attend to a set of tasks while ensuring that
each task is visited with a certain frequency: it was
shown in [9] that there always exists a feasible pe-
riodic schedule — a result resembling our proof that
for our problem a periodic schedule can be arbi-
trarily close to the optimum.

e Finding (large) gaps between agents in a periodic
motion is the subject of the Lonely runner conjec-
ture [20].

1.2 Problem Formulation and Notation

In the problem input we have a polygonal path P (pos-
sibly with self-intersections) which we call the thread;
let n be the number of edges of P and let £ € Ry be
the length of the longest edge. We treat the thread as
a directed path; let s be its starting point. A bead is
a radius-1/2 disk whose center moves with unit speed
along P (starting from s). A schedule is a sequence
S = (t1,t2,...) of beads inter-release times: that is,
according to S, the beads are released at s at times
0,t1,t1+1t2,t1+t2+t3,. ... For convenience, we start the
beads numbering from 0 (bead 0 is released at time 0).

A schedule is feasible if the beads never collide with
each other while following P, i.e., at any time, the dis-
tance between the centers of any two beads is at least 1.
The goal is to find schedules with high throughput, i.e.,
long-term average number of sent beads, or equivalently,
to minimize the long-term average of the inter-release
times, i.e., limpy, 0o Y5~ tj/m (the reciprocal of the
throughput). We will restrict attention only to feasible
schedules for which the limit exists.

Periodic schedules A schedule is periodic if it repeats
itself, i.e., if for some p we have t;, = t; Vj; the min-
imum p for which this holds is called the period of the
schedule. If the period p = 1 (i.e., if the interval between
consecutive beads release is constant), the schedule is
called uniform.

1.3 Results

Section 2 presents an O(n3/)-time algorithm for find-
ing optimal uniform schedules (see the paragraph above
for the definition of uniform and periodic schedules); in
Section 3, we extend the algorithm to periodic sched-
ules of period p = O(1) (the runtimes of the algorithms
have p in the exponent). In Section 4, we prove that
periodic schedules (with long but bounded period) are
as good as arbitrary (i.e., possibly aperiodic) schedules.
As a corollary we obtain that the optimal (possibly ape-
riodic) schedule may be approximated arbitrarily well
by a periodic one, implying a PTAS for short paths.
Finally, in Section 5, we prove hardness of (even ap-
proximating) the problem when the period is large.

In summary, we show that our problem is hard in
general, but can be solved in polynomial time for short-
period schedules; for arbitrary schedules, the problem
admits a PTAS if the thread is short.

An applet to play with sending the beads (also
along several paths) is available at https://www.
cs.helsinki.fi/group/compgeom/necklacegame/: to
send a bead, click on the bead at the beginning of the
path. Figure 1 shows snapshots of the game.

2 Uniform Schedules

Lett =t; = ta = ... be the common value for the beads
inter-release times in a uniform schedule; our goal is to
minimize t. Consider two beads, with the second one
following the first one at distance t along P (Fig. 2),
and let eq, es be the edges of the thread on which the
beads are situated at some moment in time (we do not
assume that P’s edges are numbered — the indicies 1
and 2 in eq,es are not ordinal numbers; in particular,
it is possible that e; = e, or that ey is farther than es
from s). Let F, ., be the set of “bad” timings ¢, i.e.,
the set of values for ¢ that lead to collision of the beads
while they are on eq, es.

Lemma 1 F,, ., is a single interval (possibly empty).

Proof. Let z1, 22 encode the locations of the beads on
e1, o resp. at some moment of time, i.e., bead i is at
distance z; from the starting point of e; (recall that
P and hence its edges are directed). Let C C [0, |e1]]
[0, |e2|] be the set of (a1, z2) pairs for which the distance
between the beads is at most 1; C'is the free space [1] for
the Fréchet distance between the edges. It is well known
that C' is a connected subset of the (z1,x2)-plane (in
fact, as was proved in [1], C' is convex — the convexity of
C follows from the convexity of the distance function).
Since t = d — x2 + x1 where d be the distance (along P)
from the startpoint of es; to the start point of ey, the
beads motion is described by a (45°-sloped) line in the
(21, 2z2)-plane. The beads do not intersect iff the line
does not intersect C, which happens for a contiguous
range of t. O

For an interval I = [a,b] C R and a natural num-
ber k, let I/k = [a/k,b/k] denote the “scaled down”
copy of I. Having t outside Fy, ., ensures that two con-
secutive beads will not collide on eq, e, i.e., that for
any j the bead j does not collide with bead j + 1. To
make sure that bead j does not collide with bead j + 2,
the time interval 2¢ between the beads releases should
lie outside Fp, ,, or equivalently ¢ ¢ Fi, .,/2. Similarly,
for the bead j to avoid bead j + 3, it should hold that
t ¢ Fe, e,/3. In general, to ensure no collisions of beads
on ey, ez we should have ¢t ¢ F, .,/k for any natural k.
Overall, to avoid beads collisions on any pair of edges

https://www.cs.helsinki.fi/group/compgeom/necklacegame/
https://www.cs.helsinki.fi/group/compgeom/necklacegame/

CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

Time: 41 [ESC] Return to the meny Score: @

Figure 1: Left: 5 beads (blue) moving along the path. Right: a collision

- Td—les|

|eal

Figure 2: Left: beads at x1,z2 on edges e, ea; the part of P between the edges (dashed) has length d — |es|. Right:
Fe, ¢, = [tmin, tmax] is defined by the tangents (dotted) to C' (drawn with ipelet [15]).

of the thread, t should be outside all possible forbidden
intervals F,/k where o ranges over all pairs of edges
of P and k € N (Fig. 3).

Theorem 2 An optimal uniform schedule can be found
in O(n30) time.

Proof. Let F, = [a,, b,] for a pair o of edges. It suffices
to consider only those k for which a,/k > 1, since for
a larger k, [aqs,bs]/k C [0,1] and any ¢ < 1 is clearly
infeasible. Since the length of the thread is at most nf,
any t > nf is feasible, implying k < a, < nf. Thus, the
O(n3¢) forbidden intervals for ¢ (over all O(n?) pairs
of edges and all £ < nf) can be constructed in time
O(n3f). The optimal ¢ is the smallest one not covered
by the intervals: it is the left endpoint of one of the
intervals. 0

3 Periodic Schedules

Figure 4 gives a motivation for considering periodic
schedules: they can perform arbitrarily better than uni-
form. We first consider schedules with period 2, defined
by the two repeating beads inter-release times t1, to; our
goal is to minimize t; + to. The constraint is that no
two beads ever collide—on any pair of the thread edges.
Therefore, just as with uniform schedules (Section 2),
for every pair o of P’s edges we compute the forbidden
interval F, between two beads on the edges. Let B =
U, F» be the union of all forbidden intervals, treated as
a sequence of (maximal) pairwise-disjoint segments on
the real line: B = [a1,b1] U [ag,bo] U---Uayp, b U. ..
where a1 = 0,1 < by < as < by < az.... The number
of the segments is at most the number of edge pairs,

36'" Canadian Conference on Computational Geometry, 2024

all pairs of edges
|
|

\/

Figure 3: Optimum (dashed) is mint : ¢ ¢ U, , £ /k-

12 ESN
N /AR i\f \v
S \J\/<>\,<>

FBO

Figure 4: P is shaped as a hammer with thin handle of
length ¢ > 1 and the head of perimeter ¢. A uniform
schedule must have ¢ > ¢ (so that beads do not collide on
the opposite sides of the handle). A periodic schedule
can send a length-/ train of [£/v/2] beads with inter-
release times /2 (so the beads do not collide at the 90°
turns of P), wait until the train fully leaves P (time 4/),
and repeat. Thus the uniform schedule has throughput
©(1/¢) while the throughput of the periodic schedule is
constant (the long-term average of the release times is
> ¢ for uniform schedules and ©(1) for a periodic one).

O(n?).

In a period-2 schedule, the interval (the distance along
the thread) between beads of the same parity is k(t1+t2)
for an integer £ > 1. The interval between beads of
different parity is either k(¢t1 + t2) + t1 (from an even
bead to an odd) or k(t; + t2) + t2 (from an odd to an
even bead) for k > 0. Thus for a feasible schedule it is
necessary and sufficient that

(k+1)(t1 + t2),
k(tl +t2)+t2 ¢ B Vk=0,1,..

(as with uniform schedules, t1,t2 > 1, and it suffices
to consider inter-release times that do not exceed the
maximum thread length, n¢, i.e., (k+ 1)(1 + 1) < nf).

For any one forbidden segment [af,bs] from B and
any fixed k, the inequalities ay < (k + 1)(t1 + t2) <
by define a slab of forbidden pairs in the (¢1,t2)-plane
(Fig. 5). Similarly, the inequalities ay < k(t1+t2)+t1 <
by and ay < k(t1 + t2) + t2 < by each define a slab.
Overall, i.e., for segments [as,by] for all O(n?) f’s and
O(nf) k’s, the requirements (1) define O(n3/) slabs. We
build the arrangement of the slabs and find the vertex
of the arrangement minimizing t1 + to in O(n®¢?) time

E(ti +t2) + t1,

., nl/2 S

2 A

Figure 5: The requirements (1) define slabs of forbidden
(t1,t2) pairs (gray). The optimal schedule (marked with
the asterisk) minimizes t; + to for points outside the
slabs (white).

(by going through all the vertices).
The above algorithm extends to schedules of any
length p:

Theorem 3 An optimal schedule with period p can be
found in O((n®pl)P) time.

Proof. Let b,b' € Z§,b < V' be two beads, identified
with their positions in the schedule (recall that we start
numbering the beads from 0). If b = V' mod p, then in
a period-p schedule the interval (the distance along the
thread) between the beads is (k4 1)(t1 +t2 + -+ -+ tp)
for an integer £ > 0. More generally, if b = r mod p and
b = 7’ mod p, the distance is

D(ra' k) =tpp1 +tpgo+ -+t

2
th(t ot ty) H e)

Thus for a feasible schedule it is necessary and suffi-
cient that

D(r,v" k) ¢ B
vror' =0,1,...p—1

(3)

Vk=0,1,...,nl/p,

For any one segment [af,bs] from B and any fixed
r,r’, k the inequalities ay < D(r,7’,k) < by define a
slab of forbidden schedules in the (1,2, . .., t,)-space—
overall, i.e., for segments [as,bf] for all O(n?) f’s,

CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

I ZL I ZL I
P -
I I I
0l * L g
t to ts tq ts time

Figure 6: Length-L segments (gray) correspond to
beads in the maximum-throughput schedule; we will re-
move the segments marked with asterisks.

O(nl/p) k’s and O(p?) pairs (r,7'), the requirements (1)
define O(n3pf) slabs in the p-dimensional space. We
build the arrangement of the slabs and find the vertex
of the arrangement minimizing ¢; +t3 + - -+ + t,. O

4 Arbitrary Schedules

Let 7 be the value of optimal throughput over arbi-
trary, possibly aperiodic schedules. We show that peri-
odic schedules can achieve a throughput arbitrarily close
to 7:

Theorem 4 For any € > 0 there exists a periodic
schedule whose throughput is at least T — €.

Proof. Let L denote the length of P. Identify each
bead with the length-L segment on the real line, span-
ning the time during which the (center of) the bead tra-
verses P (Fig. 6). Consider the segments in the optimal
(possibly aperiodic) schedule S. Choose an integer Z >
2L7% /e and draw vertical lines t = ZL,t = 2ZL,...
at the regular spacing ZL. We claim that no such line
intersects the interior of more than z = 2L7 segments.
Indeed, the segments intersecting any one line cover at
most 2L of the time. If there existed a line intersecting
a set of more than z segments, we could have laid such
sets one after another, obtaining a (periodic) schedule
with throughput at least /2L > 7, contradicting the
global optimality of S.

Now remove from S the segments whose interior is
intersected by one of the drawn vertical lines. By the
above, the fraction of the removed segments is less than
x/Z, implying that the throughput of the schedule with
the remaining segments is greater than 7—7xz/Z > 7—e.
It follows that at least one set of segments between the
lines has throughput > 7 = ¢; (in fact, such sets should
appear infinitely often, but for us it is enough to) take
one such set and repeat it — this results in a periodic
schedule with throughput > 7 —e. O

It follows from the proof of Theorem 4 that to get a
schedule with throughput 7(1 — 2/Z) > 7(1 — ¢/7) it
is enough to find an optimal schedule in a length-ZL
interval. Since the number of beads sent during the
interval is O(ZL) = O(L?7?/e), it suffices to consider
schedules with period O(L?72/¢). Taking § = ¢/, we
conclude that a (1 — d)-approximation to the maximum

throughput can be obtained by considering schedules
with period p = O(L*7/§) = O(L3/6) since 7 < L.
From Theorem 3,

Theorem 5 A (1 — d)-approzimation to the mazimum
throughput can be found in O((nL/é)O(Ls/‘S)) time.

In particular, for threads with constant length, our
problem has a PTAS.

5 Hardness of Approximating Arbitrary Schedules

Our result is based on a known inapproximability results
for maximum clique by Arora et al. [3]:

Theorem 6 (Arora et al. [3]) There is a constant
c > 0, such that approximating the maximum clique size
in an N-vertex graph to within a factor N¢ is NP-hard.

We combine this result for the maximum clique prob-
lem with an approximation-preserving reduction from
maximum clique to our problem, that is, the problem
of determining the optimal schedule of beads. Hence,
from a given graph G in which we aim to find a maxi-
mum clique we will construct a thread P, such that the
optimal release times for P correspond to a maximum
clique in G. Thus, the approximation ratio for the opti-
mal schedule of beads for P cannot be better than the
approximation ratio for maximum clique in G (given by
Theorem 6).

For the construction of P from G, we define a set
7 of maximal intervals of the timeline such that, if a
bead is released at time 0, it is safe to release another
bead within one of these intervals (and inter-release
times Z;J:f t; ¢ I,i =1,2,...;k = 0,1,... are infea-
sible). We call Z the set of safe intervals. Assum-
ing that we can construct Z as desired, we describe
the approximation-preserving reduction from maximum
clique in Section 5.1, and we detail the construction of
7 in Section 5.2.

5.1 Reduction from Maximum Clique

Let G be the graph in which we want to solve the max-
imum clique problem, let |V(G)| = N, and let the ver-
tices be labeled 1,..., N. We use a greedy algorithm to
construct a set U = {ug,us,...un,uny1} of integers,
such that uji £ ujo £ uj3 £ uju £ ujs £uje # 0 for any
6 indicies j1,...,76 € {1,...,N + 1}. We start with
u1 = 2 (see Section 5.2 on why we do not start with 1)
and consider integers of increasing value, adding them
to U whenever they do not yield an infeasible linear
combination with the numbers previously added to U.
For integers 1,. .., %, we need to pick at least k'/® inte-
gers for U in order to exclude the other numbers due to
infeasible linear combinations. Thus, uy € O(N®).

36'" Canadian Conference on Computational Geometry, 2024

We construct a thread P with safe intervals around
{u; [1<i < N}yU{u; —uj|i>jandije E(G)} and
a semi-infinite interval starting at wy1. That is

7T =

=

(ui —&,U; + E)U

=1

(wi —uj —e,u; —u; +¢€)Ulunyr,00), €>0

iJEE(G)i>]

(4)

Any optimal schedule with release times smaller than
un41 can be repeated at intervals of time uy41. Hence,
we obtain a finite problem: Find the largest subset of
the finite parts of Z all of whose differences are in Z.

Let K = {vy,, Vk,, ..., vk, k| } be the set of vertices in
a clique with k1 < k2 < ... < k||, then release times
0,t1,t1 + to, ... with

J
Zti:ukj7j:17"'7|K| (5)
=1

yield a feasible schedule of |K| + 1 release times: the
inter-release times (for j; < ja2) are (¢1 +to + ... +
tj,) — (b1 +ta + ... +t5,) = ug,, —ug, € I, because
(Vk;, » Vk,,) € E(G). Moreover, any feasible schedule for
P for which all release times are 0 or elements of U must
be of this form.

Additionally, for a clique K in G the set
{O,uk‘m} Uj=1,... kx| {ukm — u;} is a feasible set
of release times. There also exist feasible schedules
with release times of the form wug, — ug;. The re-
lease time wuy, — Uk, 18 compatible with ug, (because
ug, — (ur, — ug;) = ug; € I) and with a single other
time ug; — ug;« (because (ux, — ug;) — (ur; — uk,.) =
ug, —ug,. €Zifij* € E(G)), but not with more release
times of this form. Hence, the schedules that do not
stem from cliques in G have bounded size. Thus, if we
aim for cliques larger than that, the release times in an
optimal schedule must stem from a clique in G.

Using Section 5.2, we construct a thread P with np =
3+7-N+7-|E(G)| edges with |Z| = f(np) = N +
|E(G)| + 1 safe intervals. With Theorem 6 we yield:

Theorem 7 There exists a constant ¢ > 0, such that
approximating the optimal schedule of beads in a thread
with np edges to within a factor n;/zfc is NP-hard.

Proof. Suppose there exists an algorithm A that can
schedule beads optimally within a factor p < ny > °.
Then we can construct an algorithm A’ for the maxi-
mum clique problem in G:

1. Use Lemma 8 to construct P from the given graph
G (the input for the maximum clique problem).

2. Use algorithm A to schedule beads on P.

an

N

Figure 7: Gadget to exclude the interval [x —b, z]. The
black lines are the horizontal edges of P adjacent to the
gadget. The total length of the (gray) gadget is x.

3. Construct a maximum clique for G from the release
times for P.

Then the approximation ratio for A’ for the maxi-
mum clique problem is the same as for algorithm A for
scheduling beads (p). Hence, we have:

p<ny? 7 = O((N + M)/?7¢) = (N'=2¢) (6)

which yields a contradiction to Theorem 6. U

5.2 Construction of the Set of Safe Intervals

We aim to exclude all but the set of safe intervals given
in Equation (4). We use a long horizontal path to which
we add several gadgets to exclude certain intervals. Be-
tween each pair of consecutive gadgets we have a hori-
zontal edge of length uy41 in P:

e To exclude (0,u; — €] use a path of length u; — ¢
that runs on itself, i.e., = up and *5-= down.

e To exclude intervals of the form [z — b, z] we use
the gadget shown in Figure 7: The total length of
the gadget (shown in gray) is x, we have two ver-
tical edges of length % each within a distance of 1,
and part of a slanted square with four edges, total
length « — b, and a distance > 1 between parallel
edges. For example, if we aim to exclude the in-
terval [u; + &, u; 41 — €] from the safe intervals, we
choose © = u;4+1—¢, b/2 = u;—e, which excludes the
interval [x—b, z] with x —b = u;11 —e— 2% (u; —¢) =
u; + €. Each of these gadgets also excludes the in-
terval (0,+/2], thus, we choose u; > 1.

Each gadget except for the first has one horizontal
edge and six edges within the gadget. The gadget ex-
cluding the interval (0,u; — €] has three edges. Hence,
for a graph G with N vertices, constructing the set 7
of safe intervals from Equation (4), that is, excluding
all “unsafe” intervals, we use n =3+4+7- N + 7 |E(G)]
edges. This yields:

Lemma 8 Given a graph G with |V (G)| = N, |[E(G)| =
M, we can construct in polynomial time a thread P with
np =3+7-N+7-|E(G)| vertices, and C(G) < S(P) <
C(G)+1, where C(G) is the mazimum clique size in G,
and S(P) the length of an optimum finite schedule for P.

CCCG 2024, St. Catharines, ON, Canada, July 17 — 19, 2024

6 Conclusion

We gave pseudopolynomial-time algorithms and hard-
ness results for scheduling uniform motion of well sepa-
rated agents along a given path; our algorithms extend
to the case of agents following multiple (constant num-
ber of) paths. An open problem is the existence of a
polynomial-time solution.

Acknowledgements We thank the anonymous review-

ers for their helpful comments.

This research is par-

tially supported by the Swedish Transport Administra-
tion and the Swedish Research Council.

References

1]

H. Alt and M. Godau. Computing the fréchet
distance between two polygonal curves. Interna-

tional Journal of Computational Geometry € Ap-
plications, 5(01n02):75-91, 1995.

E. M. Arkin, J. S. Mitchell, and V. Polishchuk.
Maximum thick paths in static and dynamic envi-
ronments. In Proceedings of the twenty-fourth an-
nual symposium on Computational geometry, pages

20-27, 2008.

S. Arora, C. Lund, R. Motwani, M. Sudan, and
M. Szegedy. Proof verification and the hardness of
approximation problems. J. ACM, 45(3):501-555,
May 1998.

A. T. Becker, S. P. Fekete, P. Keldenich,
M. Konitzny, L. Lin, and C. Scheffer. Coordinated
motion planning: The video (multimedia exposi-
tion). In 34th International Symposium on Compu-
tational Geometry (SoCG 2018). Schloss-Dagstuhl-
Leibniz Zentrum fiir Informatik, 2018.

V. D. Blondel, R. Jungers, and V. Protasov. On the
complexity of computing the capacity of codes that
avoid forbidden difference patterns. IEEE Trans-
actions on Information Theory, 52(11):5122-5127,
2006.

D. Z. Chen and H. Wang. Computing shortest
paths among curved obstacles in the plane. ACM
Transactions on Algorithms (TALG), 11(4):1-46,
2015.

L. P. Chew. Planning the shortest path for a disc
in o (n 2log n) time. In Proceedings of the first an-
nual symposium on Computational geometry, pages

214-220, 1985.

E. D. Demaine, S. P. Fekete, P. Keldenich, H. Mei-
jer, and C. Scheffer. Coordinated motion plan-
ning: Reconfiguring a swarm of labeled robots with

[13]

[15]

[16]

[17]

[19]

bounded stretch. SIAM Journal on Computing,
48(6):1727-1762, 2019.

E. A. Feinberg and M. T. Curry. Generalized pin-
wheel problem. Mathematical Methods of Opera-
tions Research, 62:99-122, 2005.

O. Filtser, M. Goswami, J. S. Mitchell, and V. Pol-
ishchuk. On Flipping the Fréchet distance. In
ITCS - Innovations in Theoretical Computer Sci-
ence, 2023.

J. Kim, A. Kréller, and J. Mitchell. Scheduling air-
craft to reduce controller workload. In 9th Work-
shop on Algorithmic Approaches for Transporta-
tion Modeling, Optimization, and Systems (AT-
MOS’09)(2009). Schloss-Dagstuhl-Leibniz Zen-
trum fiir Informatik, 2009.

Y. Kobayashi and K. Otsuki. Max-flow min-cut
theorem and faster algorithms in a circular disk
failure model. In IEEE INFOCOM 2014-IEEE
Conference on Computer Communications, pages
1635-1643. IEEE, 2014.

I. Kostitsyna and V. Polishchuk. Simple wriggling
is hard unless you are a fat hippo. Theory of Com-
puting Systems, 50(1):93-110, 2012. Special issue
on FUN’10.

S. Neumayer, A. Efrat, and E. Modiano. Geo-
graphic max-flow and min-cut under a circular disk
failure model. Computer Networks, 77:117-127,
2015.

G. Rote. Free-space diagram ipelet.
https://www.mi.fu-berlin.de/inf/groups/
ag-ti/software/ipelets.html.

C. Scheffer. Scheduling Three Trains is NP-
Complete. In CCCG, pages 87-93, 2020.

C. Scheffer. Train scheduling: Hardness and al-
gorithms. In WALCOM: Algorithms and Com-
putation: 14th International Conference, WAL-
COM 2020, Singapore, Singapore, March 31-April
2, 2020, Proceedings 1/, pages 342—-347. Springer,
2020.

A. Sen, S. Murthy, and S. Banerjee. Region-based
connectivity-a new paradigm for design of fault-
tolerant networks. In 2009 International Confer-
ence on High Performance Switching and Routing,

pages 1-7. IEEE, 2009.

A. Sen, B. H. Shen, L. Zhou, and B. Hao. Fault-
tolerance in sensor networks: A new evaluation
metric. In INFOCOM 2006: 25th IEEE Interna-
tional Conference on Computer Communications,
page 4146923, 2006.

https://www.mi.fu-berlin.de/inf/groups/ag-ti/software/ipelets.html
https://www.mi.fu-berlin.de/inf/groups/ag-ti/software/ipelets.html

36'" Canadian Conference on Computational Geometry, 2024

[20] T. Tao. Some remarks on the lonely runner conjec-
ture. arXiw preprint arXiv:1701.02048, 2017.

	Introduction
	Related Work
	Problem Formulation and Notation
	Results

	Uniform Schedules
	Periodic Schedules
	Arbitrary Schedules
	Hardness of Approximating Arbitrary Schedules
	Reduction from Maximum Clique
	Construction of the Set of Safe Intervals

	Conclusion

